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Economic theories in time series contexts usually have implications on and only on the conditional 
mean dynamics of underlying economic variables. We propose a new class of specification tests for time 
series conditional mean models, where the dimension of the conditioning information set may be infinite. 
Both linear and nonlinear conditional mean specifications are covered. The tests can detect a wide range 
of model misspecifications in mean while being robust to conditional heteroscedasticity and higher order 
time-varying moments of unknown form. They check a large number of lags, but naturally discount higher 
order lags, which is consistent with the stylized fact that economic behaviours are more affected by the 
recent past events than by the remote past events. No specific estimation method is required, and the 
tests have the appealing "nuisance parameter free" property that parameter estimation uncertainty has no 
impact on the limit distribution of the tests. A simulation study shows that it is important to take into 
account the impact of conditional heteroscedasticity; failure to do so will cause overrejection of a correct 
conditional mean model. In a horse race competition on testing linearity in mean, our tests have omnibus 
and robust power against a variety of alternatives relative to some existing tests. In an application, we 
find that after removing significant but possibly spurious autocorrelations due to nonsynchronous trading, 
there still exists significant predictable nonlinearity in mean for S&P 500 and NASDAQ daily returns. 

1. INTRODUCTION 

Nonlinear time series analysis has been advancing rapidly, with wide applications in economics 
and finance (e.g. Brock, Hsieh and LeBaron (1991), Granger and Teriisvirta (1993), Teriisvirta, 
Tj .stheim and Granger (1994b), TjAstheim (1994), Granger (2001)). Like linear time series 
analysis, nonlinear time series modelling involves model identification, estimation and 
evaluation. Specification analysis is needed in model identification and evaluation. In this paper, 
we shall develop a new class of specification tests for conditional mean models in time series 
with conditional heteroscedasticity of unknown form. 

Most economic theories in dynamic contexts, such as efficient market hypothesis, 
expectations hypothesis, consumption smoothing, dynamic asset pricing and rational 
expectations, have implications on and only on the conditional mean dynamics of underlying 
economic variables given the information available to economic agents (e.g. Cochrane (2001), 
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Sargent and Ljungqvist (2002)). For example, the conventional efficient market hypothesis states 
that the expected asset return given the information available, is zero, or at most, is constant 
over time (e.g. Fama (1970, 1991), Campbell, Lo and MacKinlay (1997, Chapter 1)), and 
dynamic asset pricing implies that the expectation of the pricing error given the information 
available is zero for all assets (Cochrane, 2001). Although economic theory may suggest a 
nonlinear relationship, it does not give a concrete functional form for the conditional mean of 
economic variables.1 Various parametric models used in practice can be, at best, regarded as 
approximations to the underlying conditional mean dynamics. There are many ways to specify 
which variables in the information set, which functional forms, and which lag structures to 
be used in conditional mean modelling. It is important to test conditional mean specification, 
because misspecification in mean can lead to misleading conclusions on economic theories and 
hypotheses, and to suboptimal point forecasts. 

In time series modelling, it is important to determine first whether a time series is linear 
in mean; i.e. whether the conditional mean of a process is a linear combination of the variables 
in an information set. There have been a variety of tests for linearity in mean in the literature. 
They can be divided into two broad categories. One contains the tests derived without a specific 
nonlinear alternative. Examples include Keenan (1985), Tsay (1986) and White (1989). The 
other category consists of tests against a specific nonlinear alternative, usually formulated as 
Lagrangian Multiplier (LM) or LM-type tests. Examples include Luukkonen, Saikkonen and 
Terdisvirta (1988a,b), Saikkonen and Luukkonen (1988), Terdisvirta, Lin and Granger (1994a), 
Hamilton (2001), and Dahl and Gonzalez-Rivera (2003). The LM tests of Hamilton (2001) and 
Dahl and Gonzalez-Rivera (2003) are based on the random field theory. These tests contain a 
rich class of alternative models and can be interpreted as tests based on spline smoothers (Dahl, 
2002). The greatest appeal of the tests in the second group is that they involve no estimation of 
the specified nonlinear alternative model, which could otherwise be computationally intensive. 
On the other hand, some tests in the first group can be interpreted as LM tests against a 
nonlinear alternative. Such interpretation is informative because it can reveal against which type 
of nonlinearity a test has the best power. Of course, some tests with unspecified alternatives do 
not have an LM test interpretation, although they have the best power against certain implicit 
alternatives. 

When there is prior information about a potential alternative, or when one is interested in 
certain specific alternatives, tests against a specific alternative are a natural choice. This is exactly 
the case for the tests by Luukkonen et al. (1988a,b) and Saikkonen and Luukkonen (1988), where 
the interest is in modelling smooth regime changes. In practice, economic theory often does not 
point to a single nonlinear alternative. In such scenarios, it is desirable to have an omnibus test 
against general departure from linearity. Except White's (1989) neural network test, which can 
detect all possible misspecified functional forms given a correct lag specification, other existing 
tests for linearity in mean are of parametric nature in the sense that they all test, explicitly or 
implicitly, a parametric alternative with a fixed lag specification. These tests have optimal power 
against a specific alternative but they may have low or little power against other alternatives. 

In this paper, we propose a class of generally applicable omnibus tests for time series 
conditional mean models, with no prior knowledge of possible alternatives (including both 
functional forms and lag structures). Both linear and nonlinear conditional mean models 
are covered in a unified set-up. We use the generalized spectrum, which was proposed in 

1. In some circumstances, economic theory may suggest certain restrictions on the functional form and/or the lag 
structure of the conditional mean dynamics of an underlying process. For example, Hall's (1978) consumption smoothing 
hypothesis suggests that the expectation of the next period's marginal utility of consumption given the information 
available at the current period is a function of the current period consumption only. However, the functional form is not 
specified unless the utility function of the representative economic agent is known. 
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Hong (1999) as a new analytic tool for nonlinear time series. Thanks to the use of the 
characteristic function, the generalized spectrum can capture both linear and nonlinear serial 
dependence.2 The latter can be subtle and difficult to detect using conventional econometric tools. 
In the meantime, the generalized spectrum enjoys the nice features of spectral analysis. In 
particular, it incorporates information on the serial dependence from all lags and can characterize 
cyclical dynamics caused by linear or nonlinear serial dependence. Thus, our approach can detect 
a wide variety of misspecifications in both functional form and lag structure. This distinguishes 
our tests from the existing tests for time series conditional mean models, all of which assume a 
fixed lag order specification and focus on the functional form misspecification. One important 
feature of time series conditional mean modelling is that the conditioning information set usually 
contains an infinite number of lags (i.e. the entire past history), unless a Markovian assumption 
holds. Our tests check a large number of lags without suffering from the curse of dimensionality. 
When a large number of lags is used, chi-square tests for linearity usually have poor power 
in finite samples, due to the loss of a large number of degrees of freedom (see, e.g. Dahl and 
Gonzalez-Rivera, 2003, for more discussion). This undesired feature, fortunately, is not shared 
by our generalized spectral approach, because it naturally discounts higher order lags, which is 
consistent with the stylized fact that economic behaviours are usually more influenced by the 
recent events than by the remote past events. Thus, our tests are particularly useful when the 
information set has a large dimension. We note that our tests can be used to test the martingale 
hypothesis for observed raw data without any modification. 

It should be emphasized that Hong's (1999) generalized spectrum itself cannot be used 
to test conditional mean specification, because it can capture the serial dependence in every 
conditional moment and thus cannot separate the serial dependence in mean from that in higher 
order moments. However, because the characteristic function can be differentiated to generate 
moments, a suitable generalized spectral derivative enables us to focus only on the serial 
dependence in mean, making it suitable to test conditional mean specification. We compare a 
nonparametric (inefficient) generalized spectral derivative estimator with a restricted (efficient) 
counterpart implied by correct conditional mean specification. Our tests can be viewed as a 
generalization of Hausman's (1978) method from a parametric context to a nonparametric time 
series context, although the asymptotic theory is different. 

Most existing tests for time series conditional mean models assume observable explanatory 
variables. In contrast, our tests can check various linear and nonlinear parametric conditional 
mean models with possibly unobservable variables (e.g. past shocks) and an infinite number of 
lags. Examples include ARMA models, ARMAX models, regime-switching models (Hamilton, 
1989), state-space models (Priestley, 1988), smooth transition autoregressive models (Teriisvirta, 
1994), Poisson jump models, and threshold autoregressive models with known thresholds (Tiao 
and Tsay (1994), Potter (1995)). Our procedures only require as inputs estimated model residuals, 
obtained from any vY-consistent parameter estimates. We note that compared to the vast 
literature on testing linearity in mean, there are relatively few tests for nonlinear time series 
conditional mean models. Exceptions are Tsay (1989), Eitrheim and Terdisvirta (1996), Hamilton 
(2001), Gao and King (2001), and Chen, Hairdle and Li (2003). 

Economic theory, while having implications on the conditional mean dynamics of an 
underlying process, is usually silent about its higher order conditional moment dynamics. Thus, 
as emphasized by Granger (1995), it is important to develop tests of conditional mean models that 
are robust to conditional heteroscedasticity and other higher order time-varying moments. Failure 
to accommodate conditional heteroscedasticity will lead to improper levels for the tests, giving 

2. There has been an increasing interest in using the characteristic function in econometrics (e.g. Epps (1987, 
1988), Pinkse (1998), Singleton (2001), Jiang and Knight (2002), Knight and Yu (2002), and Chacko and Viceira (2003)). 
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a misleading conclusion. For example, an ARCH process is similar to a bilinear autoregressive 
process in terms of autocorrelations in level and level-square, respectively (Bera and Higgins, 
1997). A LM test for a bilinear alternative will be likely to mistake an ARCH process as a 
bilinear process if conditional homoscedasticity is assumed. As is well known (e.g. Diebold 
and Nason (1990), Meese and Rose (1991), Granger (1992, Section 8)), the distinction between 
nonlinearities in mean and in higher order moments has important economic implications. 
For example, suppose an asset return follows a bilinear process. Then the level of asset return is 
predictable using its past history. In contrast, if the asset return follows an ARCH process, then its 
level is not predictable because it is a martingale difference sequence (m.d.s.). As an important 
feature, our tests for conditional mean models are robust to conditional heteroscedasticity and 
all other higher order conditional moments of unknown form. Most existing tests for linearity 
in mean assume conditional homoscedasticity or i.i.d. errors (e.g. Keenan (1985), Tsay (1986), 
White (1989), Hamilton (2001), Dahl and Gonzalez-Rivera (2003)). 

Section 2 introduces the hypotheses of interest and discusses the concept of (non)linearity 
in mean. Section 3 describes our approach and introduces our test statistics. Section 4 derives the 
asymptotic distribution of the tests, and Section 5 investigates their asymptotic power. Section 
6 justifies the use of a data-driven lag order and considers a plug-in method. In Section 7, 
we examine the finite sample performance of the tests. In Section 8, we apply the tests to 
S&P 500 and NASDAQ daily indices. Section 9 concludes, and all proofs are collected in 
the Appendix. The GAUSS code for implementing our tests is available from the authors upon 
request. Throughout, we use C to denote a generic bounded constant, II the Euclidean norm, 
and A* the complex conjugate of A. 

2. FRAMEWORK AND NONLINEARITY IN MEAN 

Suppose { Yt } is a strictly stationary process. We consider a time series model 

Yt = 
g(It-1,0) 

+ et, t = 1, 2,..., (2.1) 

where It-1 is an information set at time t - 1, which may contain lagged dependent variables 
{Yt-j, j > 0}, lagged shocks {Et-j, j > 0}, and current and lagged exogenous variables 
{Zt-j, j > 0}; g(It-1, 0) is a parametric model for E(Yt I It-1), the conditional mean of 
Yt given It-l, and 0 e O is a finite-dimensional parameter. In time series modelling, It-1 
is possibly infinite-dimensional (i.e. dating back to the infinite past), as is the case for non- 
Markovian processes. This poses a challenge in testing adequacy of the model g(It-1, 0), due to 
the curse of dimensionality. 

We say that the model g(It-1, 0) is correctly specified for E(Yt I It-l) if there is some 
00 e O such that 

Ho : Pr[g(It-_, 0o) = E(Yr ] It-1)] = 1. (2.2) 

Alternatively, the model g(It-1, 0) is misspecified for E(Yt I It-l) if for all 08 O, we have 

IHTA Pr[g(It-1, ) = E(Yt I It-1)] < 1. (2.3) 

Conditional mean modelling has been the primary interest in time series analysis, because 
E(Yt I It-1) is the optimal predictor for Yr using It-1 in terms of the mean squared error 
criterion. In addition, as discussed earlier, most economic theories have implications on and 
only on the conditional mean dynamics of the underlying economic variable. 

In time series analysis, testing linearity in mean has attracted much attention, which is often 
the first stage in nonlinear time series modelling (Granger and Teriisvirta (1993, Chapter 6), 
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Hansen (1999)). Suppose 
g(It-1, 0) = XtA(0), (2.4) 

where Xt is a d x 1 vector in It-1, A (0) is a d x 1 parameter that depends on 0, and integer d 
can be finite or infinite. Following Granger and Teriisvirta (1993) and Lee, White and Granger 
(1993), we say that Yt is linear in mean on Xt if there exists some 00 e 6 such that 

Pr[E(Yt I It-) = XA (00)] = 1. (2.5) 

Otherwise, we say that model (2.4) suffers from neglected nonlinearity in mean. A more 
restrictive version of this definition was given in Granger and Terisvirta (1993) and Lee et al. 
(1993), who consider the case that Xt is observable with a fixed dimension. Here, we allow Xt 
to be unobservable, possibly with an infinite dimension. This generalization is useful because, 
when Xt has a fixed dimension, the violation of (2.5) can be caused by neglected higher order 
lags rather than neglected nonlinearity. In other words, the alternative to (2.4) can be a linear time 
series with a higher order lag structure. 

Our definition of linearity in mean differs from the usual notion of a linear time series in 
the literature, which is a weighted sum of current and past shocks {ft-j, j > 01, where {Et } is 
serially uncorrelated (e.g. Priestley, 1981, p. 141). Such a process may not be linear in mean in 
the sense of (2.5), because a white noise {et} may not be a m.d.s. A white noise process with 
nonzero conditional mean is predictable in mean. Only when {t } is a m.d.s., the notion of a 
linear time series coincides with our definition of linearity in mean. The latter concept is more 
useful for modelling conditional mean dynamics. 

Likewise, our concept of nonlinearity in mean differs from the conventional notion of a 
nonlinear time series. The latter means any departure from a linear time series with independent 
and identically distributed (i.i.d.) errors {et}. According to this definition, an AR model with 
ARCH errors is a nonlinear time series. It is linear in mean, however, in view of (2.5). As we 
have emphasized, it is important to distinguish nonlinearities in different moments, which have 
different economic implications. 

It should be noted that some popular "linearity" tests in the time series literature are designed 
to check departures from i.i.d. for observed raw data or the model error {et } (see Barnett, Gallant, 
Hinich, Jungeilges, Kaplan and Jensen, 1997, for a survey). They can capture nonlinearities in 
mean and in higher order moments, and therefore are not suitable for testing linearity in mean. 
For example, as pointed out in Lee et al. (1993), the well-known BDS test (Brock et al. (1991), 
Brock, Dechert, Scheinkman and LeBaron (1996)) can reject a correct linear AR model with 
ARCH errors. Similarly, the tests by Subba Rao and Gabr (1980) and Hinich (1982) are also 
not suitable for testing nonlinearity in mean. These tests exploit the bispectral shape of a linear 
process with i.i.d. errors and can detect nonlinearity in mean and in higher order moments.3 

Existing parametric tests for linearity in mean are powerful against some misspecifications 
in mean, but they all suffer from power loss in detecting certain nonlinear alternatives (e.g. 
Tong, 1990, Chapter 5). When there is no prior information about the alternative, it is desirable 
to have an omnibus test against a wide range of alternatives. Tsay (2001, p. 268) suggested 
combining several procedures via an augmented alternative. This will ensure power against a 
wider range of alternatives than an individual test, but the choice of the augmented alternative 
is somewhat arbitrary. Another approach is to estimate E(Yt I It-l) nonparametrically and 
compare the nonparametric estimator with g(It-1, 8), or equivalently, to estimate E(et I It-l) nonparametrically and check if it is zero (Li (1999), Gao and King (2001)). This approach works 

3. Although the generalized spectrum shares certain features similar to the bispectrum, our generalized spectral 
derivative introduced below focuses on and only on serial dependence in mean. Thus, it is suitable for testing conditional 
mean specification. 
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when E(Yt I It-l) = E(Yt I Xt) a.s. and the dimension of Xt E t-1 is small. However, it is 
not expected to work well in finite samples when the dimension of Xt is large. Our generalized 
spectral approach provides a solution to this difficulty of "curse of dimensionality". It checks 
many lags in a pairwise manner, which avoids the "curse of dimensionality".4 This is similar in 
spirit to the nonparametric additive time series modelling strategy in the literature (e.g. Marsry 
and Tjostheim (1997), Gao, Tong and Wolff (2002), Kim and Linton (2003)). On the other hand, 
the generalized spectral derivative can detect various misspecified functional forms at any given 
lag order. One can view our procedures, when applied to linearity testing, as checking the joint 
hypotheses of (i) E(Yt I It-1) = E(Yt I Xt) for some Xt E It-1 and (ii) E(Yt I Xt) = X100 for 
some 00. All existing tests for linearity in mean only focus on testing (ii) and ignore testing (i); 
they can easily miss conditional mean misspecifications that occur at higher lag orders. Moreover, 
even for any given lag order, the existing linearity tests except White's (1989) neural network test 
cannot detect all departures from (i). 

3. APPROACH AND TEST STATISTICS 

3.1. Generalized spectral analysis 
Our approach to testing correct conditional mean specification (Ho in (2.2)) is based on Hong's 
(1999) generalized spectrum, which is an analytic tool for nonlinear time series, just as the power 
spectrum is an analytic tool for linear time series (Priestley, 1981). 

Recall the model error 

et(O) 
- 
Yt - g(It-1, 0) (3.1) 

has the property that E[et(0o) I It -] = 0 a.s. for some 00 E . This implies 

E[t (00) I Itt_1] = 0 a.s., (3.2) 

where Ie_1 {{E t-1(0O), 
?t-2(00), ...}. Thus, to test Ho0, we can check if E[Et(o0) It 

_1] = 0 

a.s.5 Still, we have the curse of dimensionality problem because It_1 has an infinite dimension. 
Fortunately, the generalized spectral approach provides a sensible way to tackle this difficulty. 

For notational economy, we put t - et (0). Suppose {et } is a strictly stationary process 
with marginal characteristic function yp(u) - E(eiue') and pairwise joint characteristic function 
(pj(u, v) v E(eiUEt+ivet-lil), where i -1, u, v e R, and j = 0, ?+1.... The basic idea 
of the generalized spectrum is to consider the spectrum of the transformed series eiuet }. It is 
defined as 

1 00o 

fj(w, 
u, v) 2R - u1(u, v)e-'JW, oe [--r, r], (3.3) 

where o is the frequency, and aj (u, v) is the covariance function of the transformed series: 

Oj (u, v) - cov(eiue't, eiVEt'-l), j = 0, ?1 . 
... 

The function f((w, u, v) can capture any type of pairwise serial dependence in {Et}, i.e. 
dependence between et and st-j for any nonzero lag j, including that with zero autocorrelation. 
This is analogous to the higher order spectra (Brillinger and Rosenblatt, 1967a,b) in the sense 
that f(w, u, v) can capture the serial dependence in higher order moments. However, unlike 

4. From a theoretical point of view, the pairwise approach will miss dependent processes that are pairwise 
independent. However, such processes apparently do not appear in most empirical applications in economics and finance. 

5. For a univariate time series, the knowledge of It_1 - {Yt-1, Yt-2, .. .} is equivalent to the knowledge of 
Ite1 - {et-1 (00), Et-2(00), ... under certain regularity conditions (e.g. Priestley, 1988, p. 72). However, when It_1 
contains other current and lagged exogenous variables, these two information sets generally differ. Below, we will first 
develop tests based on 

It1 
and then consider extensions to the more general information set in Section 5. U~VIVYL~33 VLDLU t-1,~l 
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the higher order spectra, f(w, u, v) does not require existence of any moment of {et}. This is 
important in economics and finance because it has been argued that the higher order moments of 
many financial time series may not exist. 

When a 2 = E(et2) exists, we can obtain the power spectrum as a derivative of f (w, u, v): 

22 
1 

c0 f(cw, u, v) l(u,v)=(o,o)= h(wo) = 
- cov(t, t-Ije- , w [-r, r]. auazv 27 J=-oo 

For this reason, we call f (w, u, v) the generalized spectrum of {[t 1. 
As is well known, the interpretation of spectral analysis is much more difficult for nonlinear 

time series than for linear time series. For example, the bispectrum has no physical (e.g. energy 
decomposition over frequencies) interpretation, unlike the power spectrum h(cw). This is also 
the case for the generalized spectrum f(co, u, v). However, the basic idea of characterizing 
cyclical dynamics still applies: f (w, u, v) has useful interpretations when searching for linear or 
nonlinear cycles. A strong cyclicity of data may be linked with a strong serial dependence in {et I 
that may not be captured by the autocorrelation function. The generalized spectrum f(co, u, v) 
can capture such nonlinear cyclical patterns by displaying distinct spectral peaks. For example, 
suppose an asset return series has a stochastic cyclical dynamics in volatility, which may be 
linked to business cycles (e.g. Hamilton and Lin, 1996). Then the power spectrum h(w) will be 
flat and miss the volatility cycles. In contrast, f(co, u, v) can effectively capture such cycles. 
More generally, the generalized spectrum can capture cyclical dynamics caused by linear and 
nonlinear dependence. The latter includes the serial dependence in volatility, skewness and other 
higher order conditional moments.6 

The generalized spectrum f(co, u, v) itself is not suitable for testing Ho in (2.2), because 
it can capture the serial dependence in mean and in higher order moments. An example is an 
ARCH process. The generalized spectrum f(w, u, v) can capture this process, although it is 
a m.d.s. However, just as the characteristic function can be differentiated to generate various 
moments of {et}, f((w, u, v) can be differentiated to capture the serial dependence in various 
moments. To capture (and only capture) the serial dependence in the conditional mean, one can 
use the derivative 

1 oo (1,0) f(0,1,)(w, 0, v) 
 =-7r o )(0, v)e- , o E [-r, ar], (3.4) 

where 

(1,0) 0 (j (0, v) =- -j(U, v) lu=O = cov(iet, eiVe-Ijl). 

The measure a ,)(0, v) checks whether the autoregression function E(st I Et-j) at lag j is 
zero. Under appropriate conditions, a 1,(0, v) = 0 for all v R if and only if E(et I Et-j) = 0 
a.s.7 The autoregression function can capture linear and nonlinear serial dependence in mean, 
including the processes with zero autocorrelation. Examples are a bilinear autoregressive process 
Et = lZt-1t-2  Zt and a nonlinear moving-average process et = oZt-1Zt-2 + Zt, where 
{zt } -~ i.i.d. (0, a2). These processes are white noises, but they are not a m.d.s., because their 
conditional means are time-varying. Thus, E(et I et-j) is a natural tool to test Ho, whereas 
cov(st, Et-j) will miss such subtle nonlinear processes. Nevertheless, E(et I Et-j) has not been 

6. A potentially useful application is the investigation of possible nonlinear business cycles by f(w, u, v). The 
power spectrum h(w), when applied to macroeconomic time series such as the U.S. GDP growth rates, often produces 
a flat spectrum. However, some nonlinear time series experts (e.g. Tong, 1990, p. 232) believe that business cycles are 
related to nonlinear cyclical dynamics. It will be interesting to examine whether f (w, u, v) can capture and identify such 
nonlinear cycles. 

7. See Bierens (1982) and Stinchcombe and White (1998) for discussion in a different context with i.i.d. samples. 
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as widely used as cov(et, st-j). An exception is Hjellvik and Tjestheim (1996), who considered 
testing linearity in mean for observed raw data using a kernel estimator for the autoregression 
function. Tong (1990) and Terasvirta et al. (1994a) also discussed smoothed nonparametric 
estimation of the autoregression function. 

Although E(et I Et-j) and oa 1,(0, v) are equivalent measures, the use of ao 0)(0, v) 
avoids smoothed nonparametric estimation. In addition, the measure 

supv o 1,0) (0, v)l can be 
viewed as an operational version of the maximum mean correlation, maxf(.) Icorr[et, f (et-j)]l, 
which was proposed by Granger and Teriisvirta (1993, p. 23) as a measure for nonlinearity in 
mean. Similarly, the supremum generalized spectral derivative modulus 

m(wO) - supV,(_,o) If(ol',o)(w, 0, v)l, w E [-r, r], (3.5) 
can be viewed as the maximum dependence in mean at frequency w. It can be used to search 
cycles in mean that are caused by linear or nonlinear serial dependence in mean. An example of 
the latter is the well-known ARCH-in-mean effect (Engle, Lilien and Robins, 1987). 

The hypothesis of E(et I Itl) = 0 a.s. is not the same as the hypothesis of E (Et I St-j) = 0 
a.s. for all j > 0. The former implies the latter but not vice versa. This is the price we have to 
pay for dealing with the difficulty of the "curse of dimensionality". One example that is not a 
m.d.s. but has E(et I Et-j) = 0 a.s. for all j > 0 is a nonlinear moving-average process8 

et = aZt-2Zt-3 + Zt, {Zt} 
- i.i.d. (0, a2). (3.6) 

Obviously, there are many such examples.9 
It is rather difficult to formally characterize the gap between E(et I It-l') = 0 a.s. and 

E(Et I Et- j) = 0 a.s. for all j > 0. However, these two hypotheses coincide under some special 
but important cases. The first case is when {et } is a stationary Gaussian process, which can be 
a long memory. The second case is when {et } is a Markovian process. This covers both linear 
and nonlinear Markovian processes. The examples of the latter are a nonlinear autoregressive 
process Et = g(et-1) + zt and a bilinear autoregressive process et = act-1 + ztet-1 + zt, 
where {zt} ~ i.i.d. (0, a2). The third case is when {t } follows an additive-in-mean process: 
Et = a-o 

+ 
hg'lj(Ft-j) 

+ t/2zt, where gj(-) is not a zero function at least for some lag 
j > 0, and ht 

t h(Il_1) may not be additive. Additive time series processes have attracted 
considerable interest in the nonparametric literature (e.g. Marsry and Tjostheim (1997), Gao 
et al. (2002), Kim and Linton (2003)). 

To reduce the gap between E(Et I ItEl) = 0 a.s. and E(ct I st-j) = 0 a.s. for all j > 0, we 
can extend f(0,1,0) (w, 0, v) to a generalized bispectral derivative 

a B(w1 
 

2,uo ,(1,0,0)(0, v, v2)e-ijwl-ilw2 
Bu u=0 (27r)2 j=-OOE 

l=- 
-0 

j, 
9ol, (2 E [-7r, 7r], 

where 

S(0, V, v2) A,1(0 v2) E{it[eivlet-Il - Q(vi)][e1iV2Et-Ill -(v2)]1 
au u=0 

and oa,l(u, vl, v2) = E[(eiue' - po(u))(eivLet-ljl - q(0v1))(eiV2Et-|l|l _ (v2))] is a generalized 
third order cumulant. This is equivalent to the use of E(et I 8t-j, it-l), which was suggested 

8. We thank Hidehiko Ichimura for providing this nice example which the generalized spectral derivative 
f(0,1,0) (w, 0, v) will miss. 

9. It is well known (e.g. Granger and Teriisvirta, 1993, pp. 17, 44) that the class of nonlinear moving averages 
processes is generally not invertible, and as a consequence, has found little empirical application in practice. 
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by Tong (1990, p. 219). With o(10,0) (0, v1, v2), we can detect a larger class of alternatives to 

E(,et I IE_1) = 0 a.s.10 For example, it can easily detect the nonlinear moving-average process 
(3.6). Note that the nonparametric generalized bispectral derivative approach can check many 
pairs of lags (k, 1), while still avoiding the curse of dimensionality. Nevertheless, in this paper, 
we focus on 1,0) (0, v) for simplicity. 

3.2. Generalized spectral derivative estimation 

In the present context, et is not observed. Suppose we have a random sample {Y 
}t=l 

which is 
used to estimate model g(It-1, 0). We then obtain the estimated model residual 

Et Yt - g(It-1,0 ), 
t-= 

1 
.... 

T, (3.7) 

where I1 is the information set observed at time t - 1, and 0 is a V/T-consistent estimator for 

00. Examples of 0 are conditional least squares and quasi-maximum likelihood estimators. 
We can estimate f(0,1,o0) (, 0, v) by a smoothed kernel estimator 

f(01,0) (, 0, v) 1 T-1 
(1 

- 
T)/2k(jp)(1,0)(0, 

v)e- , [-r, 
7r], 27r = -T 
(3.8) 

where 1,0) (0, v) = ~rj(u, v) l=o, j (u, v) = ^j(u, v) - ^j(u, 0)^j (0, v), and 

(u, v) = 1 T eiut+i 

T-|jl t=ljl+1 
Here, p 

_ 
p(T) is a bandwidth, and k : IR -- [-1, 1] is a symmetric kernel. Examples of 

k(-) include the Bartlett, Daniell, Parzen and Quadratic spectral kernels (e.g. Priestley, 1981, 
p. 442). The factor (1 - Ij / T)1/2 is a finite-sample correction. It could be replaced by unity. 
Under certain conditions, f(0,1,0)(co, 0, v) is consistent for f(0,l1,O) (, 0, v). See Theorem 2 
below. 

Under IH0o, the generalized spectral derivative f(O0,1,0) (, 0, v) becomes a "flat" spectrum: 

f(o0''0 ) (v,0,v) o (0, ), c E[-7r, 7r], (3.9) 

which can be consistently estimated by 

fo(0oo)(c, 
0, v) 

--- 
16 )(0, ), c e[-7r, 7z]. (3.10) 
2r0 

To test H0o, we can compare f(0,1,0)(w, 0, v) with fo(?'1,o)(W, 0, v). 

3.3. Tests under conditional heteroscedasticity 
There is a growing consensus among economists that the volatilities of most high-frequency eco- 
nomic and financial data are time-varying. It is well known that the asymptotic variances of test 
statistics for autocorrelations and conditional mean models depend on the type and degree of 
heteroscedasticity present. Ignoring it will invalidate the limit distributions of test statistics (e.g. 
Diebold (1986), Lo and MacKinlay (1988), Wooldridge (1990), Whang (1998)). This is also 
true for our tests. In fact, for our tests, it is also important to take into account other higher 
order time-varying moments. Some recent studies (e.g. Gallant, Hsieh and Tauchen (1991), 

10. Tsay (1986), Hsieh (1989) and Hinich and Patterson (1993) used the third order cumulant E(EtEt-jEt-l) to 
detect nonlinearity in mean. The measure aj,1(u, v1, V2) can detect a wider class of processes than E(stEt-jet-1). 
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Hansen (1994), Harvey and Siddique (1999, 2000), Jondeau and Rockinger (2003)) documented 
time-varying conditional skewness and kurtosis of asset returns. Below, we first propose a test of 
IHo that is robust to conditional heteroscedasticity and other time-varying higher order moments 
of unknown form. This is one of the most important contributions of our paper in terms of empir- 
ical relevance and asymptotic analysis. The asymptotic analysis is nontrivial because of the need 
to take care of the serial dependence in higher order moments. 

Our test statistic that is robust to conditional heteroscedasticity and other time-varying 
higher order conditional moments of unknown form is given as follows: 

M (p) 

.j=l 

k2(jp)(,0) (T, v)2dW(v) - Ci(P)/ D(p), (3.11) 

where W : R --+ + is a nondecreasing function that weighs sets symmetric about zero 
equally, 

T-1 2 T-1 

,2) 
CI(p)= j k(j/P)T - j t= j+l T-2 T-2 1 
Di(p) =2 

jk2(j/p)k2(l/p) f f T - max(j, 1 1=1 T - max(j, 1) 

X T ItV2Yt-j(U) I t-(v') dW(v)dW(v'), 
Yt=max(j,1)+1 

and ft(v) = ei vt - ^(v), and ̂ (v) = T 
 It=l1 eiv't. Throughout, all unspecified integrals 

are taken on the support of W(.). An example of W(-) is the N(0, 1) CDF, which is commonly 
used in the characteristic function literature. The factors C1 (p) and D1 (p) are approximately the 
mean and the variance of T f _, If(?,l,0)(w, 0, v) - fo(o'l'?)((w, 

0, v)I2dcwdW(v). They have 
taken into account the impact of conditional heteroscedasticity and other time-varying higher 
order conditional moments. 

3.4. Tests under conditional homoscedasticity 
To examine why it is important to take into account the impact of conditional heteroscedasticity 
and higher order time-varying moments in testing Ho, we now derive the generalized spectral 
tests for Ho under conditional homoscedasticity and under i.i.d. for {rt }, respectively. Suppose 
{st} is conditionally homoscedastic (i.e. E(st2t IIt-l) = a2 a.s.). Then we can simplify our test 
statistic as follows: 

M2 (P) [izT- k2(j/p)(T -J)f l0) (0, v)I2dW(v) 
- 

C2(p)]/ 2(p), (3.12) 

where 

2(p) = 2 o(v, -v)dW(v) k2j= 

D2(p) =24 1 

I 

TL 2 
k2(j/p)k2(i/p) f Ij-l(V, v) 

I2dW(v)dW(v'), 

and ?2 T-1 itT=l 
2 is the sample variance of {st}t=1. Both the centring and scale 

factors C2(p) and D2(p) have been simplified, by exploiting the implication of conditional 
homoscedasticity. The form of b2(p) still takes into account the impact of possibly time-varying 
third order and higher order moments. 
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3.5. Tests under the i.i.d. case 

Many existing tests for linearity assume i.i.d. for {st } under Ho; some of them further assume 
i.i.d. N(0, a2). When {rt} is i.i.d. (0, a2), which implies Ho, our test statistic can be further 
simplified: 

M3(P) k2 (j/p)(T - i 1(0, v)2dW(v) - 3(p) (p), (3.13) 

where C3(P) = C2(p) and D3 (P) 24 f f 1o(v, v')12dW(v)dW(v') 
Sj=I2 

k4(j/p). 
The scale factor D3(p) has been greatly simplified. Interestingly, the M2(p) test derived 

under conditional homoscedasticity differs from the M3 (p) test derived under i.i.d. This 
is because M2(p) still takes into account possibly time-varying higher order moments 
(e.g. skewness and kurtosis). We note the fact that the limit distribution of M3(p) test is valid 
when {st } is i.i.d. does not mean that M3(p) is an omnibus test for i.i.d., because it only checks 
the serial dependence in mean. To test i.i.d. for {et}, the BDS test or Hong and Lee's (2003) 
test will be suitable. Nevertheless, these i.i.d. tests are not suitable for testing conditional mean 
specification, because they check the serial dependence in every moment. 

4. ASYMPTOTIC DISTRIBUTION 

To derive the null limit distribution of our tests, we provide some regularity conditions: 

Assumption Al. {Yt } is a strictly stationary time series process such that gtt - E(Yt I 
It-1) exists a.s., where It-1 is an information set at time t - 1 that may contain lagged dependent 
variables {Yt-j, j > 0}, lagged shocks {Et-j 

- 
Yt-j - It, j > 0}, as well as current and lagged 

exogenous variables {Zt-j, j > 0}, with E(6S4) C. 

Assumption A2. For each sufficiently large integer q, there exists a strictly stationary 
process {Eq,t} measurable with respect to the sigma field generated by {et-1, st-2 ... Et-q} 
such that as q -+ oo, eq,t is independent of {St-q-l, Et-q-2 . ...} for each t, E(gq,t I It-1) = 

0 a.s., E(st - Eq,t)2 < CqK for some constant Kc > 1, and 
E(eqt) 

< C for all large q. 

Assumption A3. g(It-1, 0) is a parametric model for At, where 0 e e is a finite- 
dimensional parameter, such that (a) g (-, 0) is measurable with respect to It-1 for each 0 E 0, 
and (b) with probability one, g(It-1, -) is continuously twice differentiable with respect to 0 E , 
and E supoe I ig(It-1, 0)114 < C and E supoe1 II 11jg(It_l, 0)112 < C. 

Assumption A4. 0 - o0 = Op(T-1/2), where 0 p lim(0) e e. 

Assumption A5. Let It be an observed information set available at time t that 
may contain some assumed initial values. Then limT,,+ T-1{E[supOoe Ig(I,_l, ) - 

g(It-1, 0)I114 1/4 C. 

Assumption A6. k : RI --+ [-1, 1] is symmetric about 0, and is continuous at 0 and all 
points except a finite number of points, with k(O) = 1 and Ik(z) I 

_ 
Clzl-b as z - 

 
oofor some 

b>1. 

Assumption A7. W : R --+ R+ is nondecreasing and weighs sets symmetric about zero 
equally, with f v4dW(v) < 

C. 
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Assumption A8. Put rt (v) =- eivet - (p(v) and or2 =E(t2). Then 
{-g(It, 

00), st} 
is a strictly stationary process such that (a) 

=o=l 
IIlcov[ g(It, 00o), ag(It-j, 00)] < C; 

(b) 

E=l 
SUP(u,V)ER2 

I-j(U, 

V)I < C; (c) SUPvER IIov[g(-t, 
o), 

t-j(0) C; 

(d)   El I =1sup(u,v)E2 E[(sr2 o2)~ t-j (u) t-l()] < C; (e) ?E= l -o Y=- 
SUPVER 1IKj,l,t (v) II C, where Kj,l,r (v) is the fourth order cumulant of the joint distribution of 
the process {Ig(It, 00), ift-j(v), g(It-1, 00), ft-* (v)}. 

Assumptions Al and A2 are regularity conditions on the data generating process (DGP). 
We impose strict stationarity on { Yt }. The existence of the conditional mean 1tt can be ensured 
by assuming E(Yt2) < 00oo. Assumption A2 is required only under Ho. It assumes that the 
m.d.s. {st} can be approximated by a q-dependent m.d.s. process {Et} arbitrarily well when q 
is sufficiently large. Horowitz (2003) imposed a similar condition in a different context. Because 
{t } is a m.d.s., Assumption A2 essentially imposes restrictions on the serial dependence in higher 
order moments of st. Among other things, it implies ergodicity for {t }. It holds trivially when 
{st } is a q-dependent process with an arbitrarily large but finite order q. It also covers many 
non-Markovian processes. To appreciate this, we first consider a threshold GARCH(1, 1) error 
process {et): 

st = h1Zt, {zt} I i.i.d. (0, 1), 

- 2 
t- < 

(4.1) 
ht = y + aht-_ + +st2-11(St-1 > 0) + i<1 t1 0)9, 

where 1(-) is the indicator function. This was proposed by Glosten, Jagannathan and Runkle 
(1993). It includes standard GARCH(1, 1) processes if + = -. Putting t - y ?+ +zl(zt > 
0) + P-z21(zt < 0), we have h = 

 
Y=1 

j = t-i.Defineqt, where h q t Y + 
Ti=I 

n-ji. Define 8q,t 
qZt, 

where 

hq,t Y + y q=l 1 i=1 ft-i. Then 

210= q+1 
E(st - Sq,t)2 = E(h:/2 - h 12)2 < E(ht - hq,t) = Y ~ 1 EyI) = 

with p = E(4t) = a o+ P+ + (P- - P+)E[z21(zt < 0)]. Thus, Assumption A2 holds if p < 1. 
For another example, we consider a general stochastic volatility process for {t}1: 

st 
= exp( ht)zt, {ztI} ~ i.i.d. (0, 1), 

ht 
= to ? j=I ajort-j 

+ 
- 

t, {i7t} i.i.d. N(0, o2), 
where j c=l 

< o. We do not assume independence between {zt} and {f7t}. Thus, like 

(4.1), (4.2) can also capture asymmetry in volatility. Now, put eq,t - exp(lhq,t)zt, where 
hq,t = ao + j a jzt-j + Zt. Then we have 

E(st 
- 

q,t)2= 
E{e hqt[e(ht-hqt) ]zt2 < {E[e2hqt(eI(ht-hqt) - l)4]}?[E(z4)]1 

=" [E(z 4)][E(e2hq,t1) ] (hht) 
- 

41 V" 
C 

'q 

2[ 

provided E(z4) < oc, where we have made use of the fact that the N(0, -2) moment generating 
function is E(eXh') = exp(?o2X2) 

for e ]R and the inequality that lex - II < 21x1 
for small x. Thus, Assumption A2 holds if E 

 
q+ Cq-K. A sufficient condition is 

a1j Cj-(K+l). This rules out long-memory stochastic volatility processes given K > 1, because 

=--= 
cov(ht, ht-j)= (-- Y= 

aj)2 <o. 
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Assumption A3 is a standard condition on the conditional mean model g(It-1, 0). For a 
linear model 

g(It-1, 9) 
= X9O, where Xt -It-1 is finite-dimensional, it suffices if E II Xt 114 < C. 

Assumption A3 covers many stationary nonlinear time series conditional mean models, such as 
bilinear autoregressive, exponential autoregressive, nonlinear moving average, Markov regime- 
switching, smooth transition and Poisson jump models. It also covers threshold autoregression 
models with known thresholds. An example is the class of self-exciting autoregressive threshold 
models for the U.S. economy, where recession and expansion are defined as the GDP growth rate 
being larger or smaller than zero (Tiao and Tsay (1994), Potter (1995)). However, Assumption A3 
rules out the autoregressive threshold models with unknown thresholds considered in Hansen 
(2000), where g(It-1, 9) is not continuous in threshold parameters. We conjecture that our tests 
are applicable to these models under additional conditions, but we do not attempt to justify this 
here, as it is beyond the scope of this paper. 

Assumption A4 requires a vYT-consistent estimator 0, which may not be asymptotically 
most efficient. It can be a conditional least squares estimator or a conditional quasi-maximum 
likelihood estimator. Also, we do not need to know the asymptotic expansion of 0, because 
the sampling variation in 0 does not affect the limit distributions of Ma (p). These features 
are similar in spirit to Wooldridge's (1990) heteroscedasticity-robust modified moment-based 
tests. Assumption A5 is a condition on the truncation of information set It-l, which usually 
contains information dating back to the very remote past and so may not be observable. Because 
of the truncation, one may have to assume some initial values in estimating the model g(It-1, 9); 
Assumption A5 ensures that the use of initial values, if any, has no impact on the limit distribution 
of Ma (p). For instance, consider an ARMA(1, 1) model: 

g(It-1, 9) = aYt-1 + 
E/8t-1, 

where I al < < 1 and 11 < P < oo. Here It-1 {Yt-l, Yt-2 ...} but I_1 = 
{Yt-1, Yt-2 

.... 
Y1, 0}, and Eo is an initial value assumed for eo. By recursive substitution, 

we have 

L 
t=) {E[sup_, 

Ig(Itt-1, 

8) - 
g(It-1, 9)1]14} 

k t st=l 
j-sucpoate 

BILrtl1et anet-j-1 - b =o 0 

< 
T j-tE 

[supa ath 
st-1( 

lle0lare 
-ur0) 

1]4 41 

Ttt- [E(84)] o t [E ? 41]1 < C. 

Assumption A6 is a regularity condition on the kernel k(.). It includes all commonly used 
kernels in practice. The condition of k(0) = 1 ensures that the asymptotic bias of the smoothed 
kernel estimator f(O0,1,0) (o, 0, v) in (3.8) vanishes as T -+ co. The tail condition on k(-) requires 
that k(z) decays to zero sufficiently fast as Izl -- oc. It implies fo(001 + z)k2(z)dz < oo. For 
kernels with bounded support, such as the Bartlett and Parzen kernels, b -= o. For the Daniell 
and quadratic-spectral kernels, b = 1 and 2, respectively. These two kernels have unbounded 
support, and thus all T- 1 lags contained in the sample are used in constructing our test statistics. 
Assumption A7 is a condition on the weighting function W(-) for the transform parameter v. It 
is satisfied by the CDF of any symmetric continuous distribution with a finite fourth moment. 
Finally, Assumption A8 provides some covariance and fourth order cumulant conditions on 
{ g(It-1, 0o), et}, which restrict the degree of the serial dependence in {( g(It-1, 0o), et}. 
These conditions can be ensured by imposing more restrictive mixing and moment conditions 
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on the process { -g (It1, _, 0o), 
t }. However, we do not do so to cover a sufficiently general class 

of DGPs. 
We now state the asymptotic distribution of the Ma (p) tests under Ho. 

Theorem 1. Suppose Assumptions Al-A8 hold, and p = cTXfor 0 < X < (3 + 4b2)-1 
and 0 < c < o0. (i) 

1 
(p) d N(0, 1) under Ho. (ii) If in addition E (et2 It-i) = a2 a.s., then 

d d 
M2(P) - N(0, 1) under -o. (iii) If ({et} is i.i.d. (0, o2), then M3(p) -* N(0, 1). 

As an important feature of Ma (p), the use of the estimated model residuals {t } in place 
of the true unobservable errors {et} has no impact on the limit distribution of Ma (p). One 
can proceed as if the true parameter value 00 were known and equal to 0. The reason is that 
the convergence rate of the parametric parameter estimator 0 to 00 is faster than that of the 
nonparametric kernel estimator f(O,1,0)(w, 0, v) to f(0,1,0)(w, 0, v). Consequently, the limit 
distribution of Ma (p) is solely determined by f(Ol1,') (w, 0, v), and replacing 00 by 0 has no 
impact asymptotically. This delivers a convenient procedure, because no specific estimation 
method for 00 is required. Of course, parameter estimation uncertainty in 0 may have impact 
on the small sample distribution of Ma (p). In small samples, one can use a bootstrap procedure 
similar to Hansen (1996) to obtain more accurate levels of the tests. 

Because parameter estimation uncertainty in 0 has no impact on the limit distribution of 
M1 (p), MI (p) can be used to test the m.d.s. hypothesis for observed raw data with conditional 
heteroscedasticity of unknown form. No modification to the test statistic M1 (p) or its limit 
distribution is needed. Lobato (2002) and Park and Whang (2003) proposed some nonparametric 
tests of the m.d.s. for observed raw data using the conditioning indicator function. They also 
allowed for conditional heteroscedasticity, and Park and Whang (2003) allowed for nonstationary 
conditioning variables. However, these tests only check a fixed lag order. Moreover, their limit 
distributions depend on the DGP and cannot be tabulated; resampling methods have to be used 
to obtain critical values on a case-by-case basis. 

5. ASYMPTOTIC POWER 

Our tests are derived without assuming an alternative model. To gain insight into the nature of the 
alternatives that our tests are able to detect, we now examine the asymptotic behaviour of Ma (P) 
under HA in (2.3). For this purpose, we impose a condition on the serial dependence in {et1. 

Assumption A9. 
?= 

sup l aj (0,( v) I <C. 

Theorem 2. Suppose Assumptions Al and A3-A9 hold, and p = cTX for 0 < X < 2 
and 0 < c < oo. Then as for a = 1, 2, 3, 

(p?/T)M^a((p) 
[2D k4(z)dz JJ If (o'l?)(w, 0, v) 

- fo(o1'o) (w, 0,v)|2dwdW(v) 

= 2D k4 (z)dz 
2 

,Ij= l('0)(0, v)12dW(v) 

where D =- a4 
~j 

fof a1j(u, v)I2dW(u)dW(v) = 2ra4 f f f_ If(o, u, v)I2dwdW(u) 
dW(v). 
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The constant D takes into account the impact of the serial dependence in conditioning variables 
{ei"t-i, j > 0)), which generally exists even under I[o, due to the presence of the serial 
dependence in the conditional variance and higher order moments of {t)}. This differs from 
the i.i.d. case, where D = cr4 f f lao(v, v')12dW(v)dW(v') depends only on the marginal 
distribution of et. 

Suppose the autoregression function E(Et I Et-j) ~ 0 at some lag j > 0. Then we 
have f Io' o(0, v)l2dW(v) > 0 for any weighting function W(-) that is positive, 
monotonically increasing and continuous, with unbounded support on R. As a consequence, 
limToo P[Ma(p) > C(T)] = 1 for any constant C(T) = o(T/p:). Therefore, 

Maa(p) 
has 

asymptotic unit power at any given significance level, whenever E(etI It- j) is nonzero at some 
lag j > 0.11 We thus expect that Ma (p) has relatively omnibus power against a wide variety of 
linear and nonlinear alternatives with unknown lag structure, as is confirmed in our simulation 
below. It should be emphasized that the omnibus power property does not mean that Ma (P) 
is more powerful than any other existing tests against every alternative. In fact, just because 
Ma (p) has to take care of a wide range of possible alternatives, it may be less powerful against 
certain specific alternatives than the parametric test in finite samples. Nevertheless, the main 
advantage of Ma(p) is that it can eventually detect all possible model misspecifications that 
render E(et I st-j) nonzero at some lag j > 0. This avoids the blindness of searching for 
different alternatives when one has no prior information. 

Because the existing tests for linearity in mean only consider a fixed order lag, they can 
easily miss misspecifications at higher lag orders. Of course, these tests could be used to check 
a large number of lags when a large sample is available. However, they are not expected to be 
powerful against many alternatives of practical importance, due to the loss of a large number of 
degrees of freedom. This power loss is greatly alleviated for our tests due to the role played by 
k2(-). Most nonuniform kernels discount higher order lags. This enhances good power against 
the alternatives whose serial dependence decays to zero as lag order j increases. Thus, our tests 
can check a large number of lags without losing too many degrees of freedom. This feature is 
not available for popular x 2-type tests with a large number of lags, which essentially give equal 
weighting to each lag. Equal weighting is not fully efficient when a large number of lags is 
considered. 

Once the model 
g(It-1, 

0) is rejected by our omnibus test 
Maa(p), 

one may like to go further 
to explore possible sources of model misspecification in mean. For this purpose, we can further 
differentiate the generalized spectral derivative f(0,1,0) (w, 0, v) with respect to v and construct a 
sequence of tests similar in spirit to our Ma (p) tests. In particular, the derivatives 

o'j (0, 0) with 
= 1, 2, 3, 4 yield cov(et, et-j), cov(Et, 

t_ 
), COv(st, E j) and cov(Et, 

t4E 
), respectively. 

Tests based on these derivatives can thus tell us whether there exists linear correlation, ARCH- 
in-mean, skewness-in-mean or kurtosis-in-mean effects, respectively. ARCH-in-mean effects 
are important in finance (Engle et al., 1987), and the recent literature also has documented 
time-varying skewness and kurtosis and their economic relevance in asset pricing (Harvey and 
Siddique, 1999, 2000). 

The Ma (p) tests may not be very powerful in finite samples under some scenarios, because 
no direct use of lagged dependent variables and exogenous variables (if any) has been made. This 
is the case particularly when /gt can be more effectively characterized by some vector Zt e It-1 
than by the et-j, where Zt may contain lagged dependent variables and/or exogenous variables. 
To improve power, we may extend our approach to include Zt as the conditioning variables. 

11. Since f 
f_ 

If,1,o 0, - f (0, v)12dodW(v) is strictly positive whenever E(et I Et-j) 0 
for some lag j > 0, upper-tailed asymptotic N(0, 1) critical values (e.g. 1.645 at the 5% level) should be used. 
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Put Xt = (Z', st)', and define 

(1 0) iv'X vEIld+I a,, (0, v)= ( cov(iet, eiv't-), ve ]d+ 

where d is the dimension of Zt.12 The associated test statistic of Ho that is robust to conditional 
heteroscedasticity and higher order moments of unknown form is given as follows: 

Mex(p) 
-- 

k2 (jp)(T - j) fd+ I (1,0), v)2dW(v) - Cex,I(P) Dx1( 
(5.1) 

where ,(0, v) = rx(u, v)lu=o, &x(u, v) = Ex,j(u, v) - Ex,J(u, 0)sExj(0, v), 
Oex,j(u, v) (T - j)- 1T=lj+1 eiuEt+iv'Xt-ll, and Xt = (Z, Et)'. In addition, Cex,I(P) 
and Dex,1 (p) are defined in the same way as Ci (p) and D1 (p) in (3.11) with /ft(v) replaced by 

lX,t-j(v) 
- 

eiv'Xtii - _x(v), where ix(v) = T-1 T=-1 eiv'Xt. For simplicity, we can use a 

product weighting function W(v) = lI4 W(vj), where W(.) satisfies Assumption A7. The test 
statistic Mex(p) involves (d + 1)- and 2(d + 1)-dimensional numerical integrations, which can 
be evaluated by simulation when d is large. 

P 
Under suitable conditions, we can show that Mex(p) -* N(0, 1) under H0o, and 

4o 
2 00 

(1, 0) 0 V) 12 
(p2/T)Mix(p) - L2Dx 

j k4(z)dz j= IIOx (0X , v)I2dW(v) 

under HIA, where DX = a4 E l f f IUxx,j(u, v)l2dW(u)dW(v) and axxj(u, v) = 

cov(eiu'xt, eiV'xt-Iil). Thus, this test can detect all model misspecifications in mean that render 
E (Et I Xt-j) -- E (t I Zt-j, et-j) :0 for some j > 0. 

A plausible alternative approach to testing Ho in (2.2) is to consider a test based on the 
statistic T-1 1 T 

j= k2(j/p)(T - j) [T - j t=j+m 
MJ(t-j) , (5.2) 

where h j(-) is a smoothed nonparametric estimator for the autoregression function E(Et I 8t-j) 
at lag j. This test also avoids the curse of dimensionality and can detect the same class of global 
alternatives to Ho as the Ma (p) tests. Moreover, the estimator Mr j(.) is often of more direct 
interest in practice. Nevertheless, unlike 6j(0, v), rhj (.) involves a smoothing parameter, say a 
bandwidth hj (for simplicity, one can set hj = h - h(T) for all j > 0). Closely associated 
with the choice of the bandwidth h, the test based on (5.2) is expected to have poor levels 
even for rather large sample sizes, as was documented in Hjellvik and Tjostheim (1996), who 
used a statistic similar to (5.2) to test linearity for observed raw data, with a fixed p and the 
truncated (uniform) kernel k(z) = 1(IzI < 1). Hjellvik and Tjostheim (1996) pointed out that in 
a Taylor series expansion of (5.2), asymptotically negligible higher order terms depend on h and 
are nearly of the same order of magnitude as the dominating term that determines the asymptotic 
distribution. As a consequence, to retain the dominating term and to neglect the others will give 
poor approximations in finite samples.13 

12. The Fourier transform, f(01,0) (w, 0, v) = (27)-1 
~ 

OO 
(0, 

v)e-ij?, e [-r, r], may be viewed 
as a generalized cross-spectrum between {et I and {Xt }. 

13. Of course, one can use bootstrap to obtain correct levels for this test. But this will complicate the 
implementation of the test. In particular, the naive bootstrap is not suitable, because there exists serial dependence in 
the variance and higher order moments. 
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6. DATA-DRIVEN LAG ORDER 

A practical issue in implementing our tests is the choice of the lag order p. As an advantage, our 
smoothing generalized spectral approach can provide a data-driven method to choose p, which, 
to some extent, lets data themselves speak for a proper p. Before discussing any specific method, 
we first justify the use of a data-driven lag order, / say. Here, we impose a Lipschitz continuity 
condition on k(.). This condition rules out the truncated kernel k(z) = 1(Iz| < 1), but it still 
includes most commonly used nonuniform kernels. 

Assumption A10. For any x, y E R, Ik(x)-k(y)l < C Ix-ylfor some constant C < oo. 

Theorem 3. Suppose Assumptions A1-A8 and A10 hold, and i is a data-driven 
bandwidth such that p/p = 1 + Op(p-(3-1)) for some P > (2b - 1)/(2b - 1), where b is as 
in Assumption A6, and p is a nonstochastic bandwidth with p = cTX for 0 < X < (3 + 4b-2 
and 0 < c < oo. Then (i) MI1 (P) - MI (p) 4- 0 and M1I () d- N(0, 1) under 

Ho. 
(ii) If in 

E2e/ I h-i) = 0r2 a.s., then Md(/) - 0 and addition E( t ) 2 a.s., then ) - 2(p) 0 and M22(3) -* N(0, 1) under HIo. 
(iii) If {et} is i.i.d. (0, a2), then M3(QM) - M3(p) -+ 0 and M3(p) d N(0, 1). 

Thus, as long as Ip converges to p sufficiently fast, the use of/ instead of p has no impact 
on the limit distribution of Ma (/). This is an additional "nuisance parameter-free" property. 

Theorem 3 allows for a wide range of admissible rates for 3. One plausible choice of/3 
is the nonparametric plug-in method similar to Hong (1999, Theorem 2.2). It minimizes an 
asymptotic integrated mean squared error (IMSE) criterion for the estimator f(0,1,0) (o, 0, v) 
in (3.8). Consider some "pilot" generalized spectral derivative estimators based on a preliminary 
bandwidth p: 

1 T-1 1- 
.10) 

i 
f(o0,1,'0)(W, 0, v) -- 

 1j=IT(1 
-j /T)k(j/) (O, v)e-?, (6.1) 1 

T-1 
1- 
(!,0p ((, v)e-ijw (6.1) 

f(q,1,0)(, , v) - T (1 - T)k(j/ ,)(, 
v)je-i, (6.2) 

where the kernel k(.) need not be the same as the kernel k(.) used in (3.8). For example, k(.) can 
be the Bartlett kernel while k(.) is the Parzen kernel. Note that f(o,1,o)(w, 0, v) is an estimator 
for f(O0,1,0) (w, 0, v) and f(q,1,0) (Cw, , v) is an estimator for the generalized spectral derivative 

f(q,1,0)(W, 0, 
V) =- 

1 =-oo 
aj io(0, v)l1j e-ijw. (6.3) 

For the kernel k(.), suppose there exists some q e (0, oo) such that 0 < 
k(q) 

= limzo 1-k(z)< 
oo00. Then we define the plug-in bandwidth 

/ -- o0T 2q+ , (6.4) 

where the tuning parameter estimator 

c [ 2q(kf q))2 ff_ 
(q,1,O)(W, 0, v)12ddW(v) 

2q+1 

Lf02k2(z)dz f r [ff I(o0,O)(W, v, -v)dW(v)]2dcvj 

2q(k)) 1j=-T j 
2(j/ lj2q f 

I1'0)(0, v)12dW(v) 2q+1 

jI(T k2(z) - Ijl)k2(j/^)R(j) f &j(v, -v)dW(v) 
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and R(j) -- (T - Ij1)-1 E +1 t 4 Note that o3 is real-valued. One can take its integer 
part, and the impact of integer-clipping is expected to be negligible. 

The data-driven po in (6.4) involves the choice of a preliminary bandwidth p, which can be 
fixed or grow with the sample size T. If p is fixed, P0 still generally grows at rate T 2q+1 under 
HA, but Co does not converge to the optimal tuning constant co (say) that minimizes the IMSE 
of f(O1,o) (w, 0, v). This is a parametric plug-in method. Alternatively, following Hong (1999), 
we can show that when p- grows with T properly, the data-driven bandwidth po in (6.4) will 
minimize an asymptotic IMSE of f(0,1,0)(w, 0, v). The choice of j is somewhat arbitrary, but 
we expect that it is of secondary importance. This is confirmed in our simulation and empirical 
application below.15 

We emphasize that the data-driven 3 based on the IMSE criterion generally will not 
maximize the power of Ma (p). A more sensible alternative would be to develop a data-driven 
pi using a power criterion, or a criterion that trades off level distortion and power loss. This 
will necessitate higher order asymptotic analysis and is beyond the scope of this paper. We are 
content with the IMSE criterion here. Our simulation experience suggests that the power of our 
tests seems to be relatively flat in the neighbourhood of the optimal lag order that maximizes the 
power, and po in (6.4) performs reasonably well in finite samples. Nevertheless, the issue of the 
optimal data-driven 3 for our tests is far from being resolved from a theoretical perspective. 

7. MONTE CARLO EVIDENCE 

We now investigate the finite sample performance of our Ma (p) tests. While our tests can be 
used to test nonlinear conditional mean models, we focus on testing linearity in mean, which 
has attracted a lot of attention in the literature. Because our tests are derived without specifying 
an alternative, we will compare them with a number of popular linearity tests of similar spirit, 
namely those of Tsay (1986), White (1989) and Hamilton (2001). The limit distributions of these 
tests are derived under conditional homoscedasticity or i.i.d. N(0, 

a-2). 
Their robust versions 

under conditional heteroscedasticity of unknown form have not been available. 

7.1. Simulation design 
7.1.1. Level. To examine the levels of the tests under H0o, we consider the following 

DGPs: 

DGP S.1 [AR(1)-i.i.d. (0, 1)]: Yt = 0-5Yt-1 + et, et ~ i.i.d. N(0, 1), 

Yt = 
0-5Yt-1 

+ Et, 
DGP S.2 [AR(1)-ARCH(1)]: Et = h /2Zt, ht = 0.43 + 0.5782_1, 

zt ~ i.i.d. N(0, 1). 

14. For the 
lex(p) 

test in (5.1), we need to modify 
0 

as follows: 1'0)(0, v) in the numerator of c0 should 
be replaced by ̂ j& (0, v) as used in (5.1), and &j(v, -v) in the denominator should be replaced by xx, j(v, -v) = 

OxX,J(V, -v) - ?XX,J(v, O)PXX,j(O, -v), where Pxx,j (u, v) = (T - Ij )-1 T=jl+l1 eiUXt+iv'fxt- j , and Xt 
(Z,, it)'. Moreover, the univariate weighting function W(v) should be replaced by the product weighting function 

W(v) 
= 

jHdl W(vj), where v = (v,...vd+l) 
15. The tuning parameter estimator 80 will converge to zero under HO. To ensure p3O -* oc, we can use the 

formula (6.4) supplemented with a slow-growing lower bound (say In T) such that po = max(ln T, 0o). The choice of 
the slow-growing lower bound In T is arbitrary, but it will not affect the IMSE-optimal rate 50 under HA, when T is 
sufficiently large. 
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HONG & LEE TESTING FOR CONDITIONAL MEAN MODELS 517 

Under these DGPs, the linear AR(1) model 

g(It-1, 0) = 01 + 02Yt-I (7.1) 

is correctly specified for E(Yt It-1) = 0-5Yt-1. The parameter 00 - (0, 0-5)' can be estimated 
consistently by the OLS estimator 0. The model error {et(0o)} is conditionally homoscedastic 
under DGP S.1; all tests considered are asymptotically valid under this DGP. Under DGP S.2, 
{t (00o)} is conditionally heteroscedastic; only M1 (3o0) has a valid limit distribution. This allows 
us to examine the importance of taking into account conditional heteroscedasticity. We have 
chosen parameter values in DGP S.2 such that E[E4(00)] < 0o).16 To examine the level, we 
consider three sample sizes: T = 100, 250 and 500. 

7.1.2. Power. Next, we examine the power of the tests for neglected nonlinearity or 
dynamic misspecification in mean (i.e. lag order misspecification). Because the other tests 
for linearity in mean are not valid under conditional heteroscedasticity, we will focus on 
homoscedastic errors in power comparison. We consider the following DGPs: 

DGP P.1 [Bilinear(1)]: Yt = 0-5Yt-1 + 0-6Yt-lEt-1 + et, 
DGP P.2 [NMA(l)]: Yt 

= 0-.5Yt- - 0.68e21 + t, 
DGP P.3 [EXP-AR(1)]: Yt = 0.5Yt-1 + 10Yt-1 exp(-Y,21) + t, 

0 J5Y-1 +? 
if Yt-1 < 0, 

DGP P.4 [SETAR(1)]: Yt = 1 
0.5Yt-1 

+ 
Et 

if 
Yt-1 

< 
0, 

-0-5Yt-1 + et if Yt-1 > 0, 

Yt = 1 - 0-5Yt-1 - (4 + 0.4Yt_1)G(aYt-1) + et, 
where G(z) = [1 + exp(-z)]-1, 

DGP P.6 [ARMA(1, 1)]: Yt = 0-5Yt-1 + 0-5st-1 + Ft, 

DGP P.7 [NMA(5)]: Yt 
= 

0.5Y-1 
+ 0=l 

05 ? et, 

DGP P.8 [SIGN AR(6)]: Yt = 1(Yt-6 > 0) - 1(Yt-6 < 0) + et, 

where {st} is i.i.d. N(0, 1). 
DGPs P.1-P.5 are taken from Tsay (2001). They cover bilinear autoregressive, nonlinear 

MA, exponential autoregressive, self-exciting threshold, and smooth transition threshold 
processes. These DGPs allow us to examine the power of the tests against various neglected 
nonlinearities in mean. DGP P.6 is a linear ARMA(1, 1) process, under which the AR(1) 
model in (7.1) suffers from dynamic misspecification rather than neglected nonlinearity in 
mean. Note that DGPs P.1-P.6 are all first order dynamic processes. Our tests, which employ 
several lags, may not be expected to be the most powerful against them. To highlight our 
approach, we include DGPs P.7 and P.8. DGP P.7 is an extended nonlinear MA process 
up to lag 5, with declining coefficients. Declining weights reflect the stylized fact that 
economic behaviours are usually more influenced by the recent past events than the remote 
past events. DGP P.8 is a sign autoregressive process with a time delay of six periods. Time 
delay is an important feature in nonlinear time series (Tong (1990), Granger and Teriisvirta 
(1993, p. 8)). After removing the best least square approximation to each of DGPs P.1- 
P.8, we find that for all these DGPs, the generalized spectral derivative m(w) in (3.5) of 
the model error 

el 
Est (0), where O0 = p limO, is not flat over the frequency w.17 

16. We also consider a GARCH process with an infinite fourth order moment. The level performance of the 
generalized spectral derivative tests is similar. 

17. In checking whether m (w) is flat, we use a numerical method. We first generate a data of 10,000 observations 
and obtain the OLS residuals of the AR(1) model in (7.1) fitted to the simulated data. Then we obtain the kernel estimator 
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Thus, our tests are expected to be able to detect model misspecifications under all these 
DGPs for the sample size T sufficiently large, in light of Theorem 2. We will examine how 
powerful our tests are relative to the other tests for two sample sizes: T = 100 and 250, 
respectively. 

7.2. Computation of test statistics 

To compute the test statistics of Tsay (1986), White (1989) and Hamilton (2001), one has to 
determine how many lags (p) should be used in the test vector Zt = (Yt-1,..., Yt-p)'. We 
choose p = 1, 2 and 5 for these tests.18 Tsay's (1986) test statistic is computed as follows: (i) 
regress Yt on 1 and Yt-1 and save the estimated residuals {&t}; (ii) let Ht be the vector containing 
1p(p + 1) cross-product terms of the components of Zt, in the form Yt-j Yt-k, where j > k and 
j, k = 1,..., p. Then regress Ht on 1 and Yt-i and save the vector-valued residuals {$t); (iii) 
regress it on ?t and save the estimated residuals {vt }; (iv) compute Tsay's statistic 

T ) (ET1 :TI 
(T1 

tI - (ETI P(P + 1) 
TSAY(p) = 

(LT= t)/(T-p- p (p + 1) - 1) 

and compare it to the F[ p(p + 1), T - 1 p(p + 3) - 1] distribution.19 
White's (1989) neural network test statistic is computed as follows: (i) regress Yt on 1 and 

Yt-1 and save the estimated residuals 
{&l 

}; (ii) construct the test function Irjt (~' (Yjo + yjZt), 
j = 1, ... ,q, where 

l1(.) 
is the activation function, j -- (yo, Yj)' is randomly drawn from a 

uniform distribution on [-2, 2]p+l, and q is a pre-specified number of hidden units. Following 
Lee et al. (1993), we scale {Yt} to [0, 1], using the logistic function .r(u) = [1 + exp(-u)]-1, 
and set q = 10; (iii) compute the principal components of =t 

- 
(*lt, 

t.... 
Crqt)' and retain the 

q* largest principal components 1tr* except for the largest one. We set q* = 3; (iv) regress &t on 
1, Yt-1 

and 4t, and obtain R2, the squared uncentred multi-correlation coefficient; (v) compute 
the test statistic NN(p) = TR2, and compare it with 

Xq.. In addition to the lag order p, Hamilton's (2001) test involves choosing a covariance 
function Hp (.) for the underlying random field, and the value of the associated p x 1 parameter 

vector g. Hamilton's (2001) test statistic is computed as follows: (i) set gj = 2/(ps^) 2, 
j = 1 ..., p, where sj is the sample standard deviation of Yt-j; (ii) calculate the T x T matrix 
H whose (t, s)-th element is given by Hp{ [jP=1 gj(Ytj - Ys-j)2]11/2}, 

for the pre-specified 
covariance function Hp (-) given in Hamilton (2001, Theorem 2.2 or Table I); (iii) regress Yt on 1 
and Yt-1, with the estimated residuals {1t}, the residual sample variance 02 - 8'/(T - 2) and 
the T x T projection matrix M - IT - X(X'X)-1X for X the T x 2 matrix whose t-th row is 
(1, Yt-1); (iv) compute the test statistic 

[U'HE - -2tr(MHM)]2 HM(p) = 
p 

- 

4{2tr[(MHM - (T - 2)-1M tr(MHM))2]}' 

and compare it to the X2 distribution. 

f(0, 1,0) (w, 0, v) in (3.8) and plot the shape of the estimated supremum generalized spectral derivative modulus m(w). 
Here, the Parzen kernel and the data-driven bandwidth 50 described in Section 6 are used. 

18. It is not realistic to choose p as large as p = 20 (say) for these existing tests when T = 100. For example, 
Tsay's (1986) test would have 1 p(p + 1) = 210 variables in an auxiliary regression, which is larger than the sample size 
T. In contrast, the choice of p = 20 when T = 100 is reasonable for our generalized spectral derivative tests. 

19. In fact, the effective sample size in some auxiliary regressions is T - p, so we have replaced T with T - p in 
computing the test statistics of Tsay (1986), White (1989) and Hamilton (2001). 
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TABLE 1 

Empirical levels of tests 

DGP S.1 : et - i.i.d. N(0, 1) DGP S.2 : t -- ARCH(1) 
T = 100 T = 250 T = 500 T = 100 T = 250 T = 500 

a 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 

M1(2) 4.4 2.7 5.6 3.3 3.7 2.5 4.4 2.2 6.2 3.2 8.3 5-1 
M1(4) 4.9 2.5 7.5 4.3 5.8 3-3 4-1 1-7 5-8 2-8 7-3 4.5 
M1(6) 4.5 2.2 7.6 4-0 6.3 3.6 3.6 1-6 5.7 3.2 7.2 3-5 

M2(2) 4.6 2.4 5-4 3.3 4.1 2-7 23.7 18.6 27-8 21-0 32-0 23-7 
M2(4) 5.6 2.7 7.9 4.3 5.8 3.5 22.2 17-1 27-1 19-9 30-4 22.8 
M2(6) 5.7 2.9 8-3 4.7 6-6 4.2 20-3 14-9 24.1 18.8 27.5 21-1 

M3(2) 4.7 2.6 5.5 3-3 4.2 2.7 24.8 19.1 28.2 21-3 32-7 24.9 
M3(4) 6-3 3-7 7-9 4.7 6-0 3-7 24.0 18.8 27-8 21.2 31.4 24.5 
M3(6) 6.5 4.1 8-7 5.5 7-0 4.4 23.0 18.0 25.9 20.3 29.8 23.0 

Tsay(1) 10-3 4.6 8.1 3-5 9.1 3.3 24.1 16-7 35-0 27.4 43.3 35.9 
Tsay(2) 9.7 5.1 9-0 4-6 7-5 3.9 39-0 30.3 52.4 43.1 61.3 53.6 
Tsay(5) 6.7 3.2 7.5 3.6 8.2 4.1 36-6 28.4 57-7 49-3 69-9 62-6 

NN(1) 7.2 3.8 9.5 4.5 8.3 3.6 39.3 30.7 57-1 48-4 66-5 59.0 
NN(2) 10.7 5.3 9.9 4.7 9.0 4.9 33.5 25.5 43-5 34.7 53.0 45-8 
NN(5) 11.1 4.7 11-3 6-5 10.0 5-5 16.0 8.8 20.4 12-6 25-5 16.9 

HM(1) 8.5 6.2 6.6 5.5 7-0 4-6 14.5 11.8 18-1 13.5 22.2 18.1 
HM(2) 6.8 4.2 6.8 4.0 9.1 5-4 11.6 8-2 13-0 9.7 17-0 12.0 
HM(5) 8.4 4.7 9.8 5.8 10.0 5.1 5.7 3-0 7.0 3.9 8.0 4.6 

Notes: (1) M1(3), M2(3), M3(j3), the generalized spectral tests derived under conditional 
heteroscedasticity, conditional homoscedasticity and i.i.d., respectively; Tsay(p), Tsay's (1986) 
test; NN(p), White's (1989) neural network test; HM(p), Hamilton (2001) random field test; 
(2) DGP S.1, Yt= 0.5Yt-_1+t, Ete- i.i.d. N(0, 1); DGP S.2, Yt= 0.5Yt-1+st, et=-,Itzt, zt ~ 
i.i.d. N(0, 1); (3) 1000 iterations. 

To compute Ma ( 50), we use the N(1, 0) CDF truncated on [-3, 3] for the weighting 
function W(.). We use the Bartlett kernel kB(z) = (1 - Izl)1(Izl < 1) for k(-), which has a 
bounded support and is computationally efficient. Our simulation experience suggests that the 
choices of W(.) and k(.) have little impact on both the level and the power of our tests.20 We 
choose a data-driven ^0 via the plug-in method in (6.4), with the Bartlett kernel for k(.) used 
in the preliminary generalized spectral derivative estimators in (6.1) and (6.2). To examine the 
impact of the choice of preliminary bandwidth 13, we consider 1 = c[(k ))2/ f k (u)du]2 T = 

c(10T) 5, c > 0. This rate is optimal for estimating the preliminary generalized spectral 
derivative f(,1o0)(wo, 0, v). We choose c = 2, 4, 6, which cover a wide range of values for 
/ : [7-96, 23-87] for T = 100, [9-56, 28-69] for T = 250, and [10-98, 32-96] for T = 500. 

7.3. Monte Carlo evidence 

Table 1 reports the empirical rejection rates of the tests under Ho at the 10% and 5% levels, using 
the asymptotic theory. Under DGP S.1 (homoscedastic errors), all Ma (I30) tests underreject Ho 
but not excessively; the tests M2(o0) and M3(350) derived under conditional homoscedasticity 
and i.i.d., respectively, have better levels than MI (30). There is some tendency that a larger 
preliminary lag order 3 gives a better level for all Ma (p) tests. Under DGP S.2 (ARCH errors), 
M2(60) and M3(3o0) display strong overrejection, as is expected. In contrast, M1I(30o) shows 

20. We have also used the Parzen kernel (not reported). Although the data-driven lag order 30 is substantially 
smaller, the test statistics are rather similar to those based on the Bartlett kernel in most cases. 
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substantial underrejection for T = 100, but improves as T increases. Unlike under DGP S.1, a 
larger p does not give a better level for M1 (Po). 

Next, we turn to the levels of TSAY(p), NN(p) and HM(p), which are valid tests under 
conditional homoscedasticity. Under DGP S.1, these tests have better levels than the Ma (o) 
tests, though not in every case. Under DGP S.2, TSAY(p) and NN(p) show very strong 
overrejections. The HM(p) test also shows some overrejections when p = 1, 2, but interestingly, 
HM(5) displays underrejection. 

Table 2 reports the level-corrected power at the 10% and 5% levels under DGPs P.1-P.8. 
The empirical critical values are obtained under DGP S.1. We compare 

M2(P0) 
and M3(i30) 

with TSAY(p), NN(p) and HM(p), all of which are derived under conditional homoscedasticity. 
Under DGP P.1 (bilinear(1)) and DGP P.2 (nonlinear MA(1)), M2(30) and M3 (Po0) are among the 
most powerful tests. The power of TSAY(p), NN(p) and HM(p) is sensitive to the choice of p. 
In contrast, the power of M2 (530) and M3 ( 0) is relatively robust to the choice of preliminary lag 
order p. Note that the heteroscedasticity-robust test M1 (o0) is less powerful than M2(o0) and 
M3 (0) under DGPs P.1 and P.2. 

Under DGP P.3 (EXP-AR(1)), NN(p) and HM(p) are the most powerful for p = 1, 2 and 
T = 100, while TSAY(p) is the least powerful. The Ma (O0) tests are powerful, though not as 
powerful as HM(p) and NN(p) with p = 1, 2. All Ma (O) tests are equally powerful. Under 
DGP P.4 (SETAR(1)), TSAY(1) and NN(1) are the most powerful, followed by HM(1). The 
Ma (3o0) tests are equally powerful. They are not as powerful as TSAY(1), NN(1) and HM(1), 
but they substantially outperform TSAY(5), NN(5) and HM(5). Again, this highlights the robust 
power property of Ma (io0) relative to the existing tests. 

Under DGP P.5 (STAR(l)), HM(p) is the most powerful, followed by NN(p) and then by 
TSAY(p). The Ma (3o) tests are the least powerful against this DGP when T = 100, but their 
power quickly catches up when T = 250. The relative ranking of the tests is quite different 
under DGP P.6 (ARMA(1, 1)). Although it is a first order ARMA process, all Ma (Po) 

tests are 
very powerful and their powers are comparable to the most powerful test NN(2). Moreover, the 
powers of Ma (Po) are robust to the choice of the preliminary lag order p. In contrast, TSAY(1), 
NN(1) and HM(l) have no power at all even if T increases. All TSAY(p) tests have little or low 
power. 

The relatively omnibus and robust power performance of the Ma ('0o) tests under DGP P.1- 
P.6 is encouraging given the fact that DGP P.1-P.6 are all first order dynamic processes whereas 
Ma (30o) employs many lags. Such omnibus and robust power apparently comes from the use of 
the characteristic function and the downward weighting kernel k(-) for lags, which highlights 
the advantages of the generalized spectrum. In fact, additional merits of Ma (1o) are further 
highlighted under DGPs P.7 and P.8. Under DGP P.7 (NMA(5)), which has a declining weight 
as lag order increases, the Ma (io0) tests are the most powerful and their powers are robust to the 
choice of the preliminary lag order j. TSAY(p) also has good power and dominates NN(p) and 
HM(p). Interestingly, although NMA(5) is a fifth order dynamic process, the maximal power of 
TSAY(p), NN(p) and HM(p) occurs when p = 2 instead of p = 5. 

Under DGP P.8 (SIGN AR(6)), where nonlinearity occurs at lag 6, TSAY(p), NN(p) and 
HM(p) all have no or low power because p < 6. This is the case even when T increases. Thus, 
it is important to select a suitable lag order for these tests, but this requires knowledge of the 
alternative. In contrast, the Ma 

(/o) 
tests are very powerful, and they require no knowledge of the 

lag structure in the DGP! 
In summary, we observe: 

(1) The empirical levels of the Ma (3o) tests are smaller than the nominal levels, but they 
improve as the sample size increases. Under homoscedastic errors, the homoscedasticity- 
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TABLE 2 

Empirical powers of tests 

DGP P.1: Bilinear(1) DGP P.2: NMA(1) DGP P.3: EXP-AR(1) DGP P.4: SETAR(1) 
T = 100 T = 250 T = 100 T = 250 T = 100 T=250 T = 100 T=250 

a 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 

MI1(2) 
55.8 42.8 74.8 64-0 78.4 62.4 99.4 99.9 86.0 82.2 100-0 99.0 58.2 46.6 

92.4 86.2 MI (4) 48.2 35.0 64.8 52.4 68.4 51.8 98.4 96.0 86.4 80.4 99.8 98.6 49.4 37.6 86.0 76.2 
MI (6) 43.2 29.8 60-2 44-8 64.4 44.8 97.2 92.6 84.6 77.4 99.4 98.8 45.2 31.2 79.2 

66.4 
M2(2) 93.8 87.2 99.8 99.8 89.8 82.0 99.8 99-4 84.2 80.0 99.4 99.0 59-4 48.0 93.4 88.0 
M2(4) 89.4 78.0 99.4 98.2 83.2 65.6 99.8 99.2 85.6 77.2 99.6 98.6 51.8 37-0 86.8 77.8 
M2(6) 84.6 70.8 98-0 95.6 75-4 56.8 99.8 98.2 81.8 74.8 99.2 98.4 45.2 28.2 79.6 68.0 

M3 (2) 94.4 87.8 99.8 99.8 90.0 82.2 99.8 99.4 84.4 80.2 99.6 99.0 59.2 48.0 93.6 88.0 
M3(4) 90.4 81.2 99.8 98.4 83.2 66.6 99.8 99.2 85.6 77.8 99.6 98.6 52.2 37.4 86.8 78.2 
M3(6) 85.6 72.8 98.8 96.2 75.6 57-8 99.8 98.4 82.4 75.4 99.4 98.4 45.8 28.4 79.8 67.8 
Tsay(1) 35.4 27.8 48.0 41.0 43.4 34.6 62.0 54.6 36.8 28.2 39.0 32.4 80.2 70.6 99.8 98.2 
Tsay(2) 86.4 81.2 94.2 92.2 74.0 62.8 93.2 88.8 23.8 17.8 29.2 21.2 67.4 53.4 97.0 94.0 
Tsay(5) 84.8 77.6 96-6 94-2 57.8 42.2 88.0 80.8 15.4 11.6 18.6 12.2 38.4 25.4 85.0 75.4 
NN(1) 91.2 87.2 94.8 93.6 95.6 91.6 99.8 99.8 98.2 95.6 100.0 100.0 78.2 68.0 98.2 96.8 
NN(2) 72.0 63.2 90-4 85.2 50-0 41.4 70.2 64.0 90.6 85.8 100.0 100.0 52.6 39.8 82.0 76.2 NN(5) 26.2 18-8 48.0 36.4 14.2 9.0 17.6 8.8 78.4 70.8 98.4 97.0 10.4 6.4 11.6 5.2 
HM(1) 85.8 74.0 99-6 98.0 88.2 79-0 100.0 99.4 100.0 100.0 100.0 100.0 66.2 53.4 96.6 93.8 
HM(2) 92-0 85.4 100-0 100.0 92-0 86.0 100.0 100.0 100.0 100.0 100.0 100.0 46.8 38.0 

87.2 83.4 
HM(5) 38.6 27.8 86.6 73.4 33.8 23-0 91.2 82.4 95.6 92.8 100.0 100.0 17.2 12.0 41.6 29.8 

O 
Z 
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O 
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TABLE 2-continued 

DGP P.5: STAR(1) DGP P.6: ARMA(1,1) DGP P.7: NMA(5) DGP P.8: SIGN AR(6) 
T= 100 T = 250 T= 100 T = 250 T= 100 T = 250 T= 100 T = 250 

a 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 

MI1(2) 58.6 45.0 96.6 92.8 86.8 76.0 99.8 99-6 96.0 90.2 100-0 100.0 52.8 43.6 100-0 100.0 
M1 (4) 54.6 38.0 95.4 89.0 83.6 70.4 99.6 99.0 90.0 85.0 100.0 100.0 99.2 97.2 100.0 100.0 
M1(6) 52.0 34.6 92.6 80.6 78.8 65.8 99.4 98.0 87.2 78.6 100.0 100-0 99.8 99.2 100.0 100.0 

M2(2) 61.2 48.0 96-8 93.4 87.2 79.6 99.8 99.8 97.6 94.0 100-0 100.0 53.6 42.6 100.0 
100.0 M2(4) 60.2 39.0 95.6 90.4 85.4 70.8 99.6 99.0 94.0 87.2 100.0 100.0 99.4 96.8 100.0 100.0 

M2(6) 51.8 33.0 93.2 83-0 79.6 66.4 99-4 98.2 91.0 81.4 100.0 100.0 100.0 99.2 100-0 100.0 

3 (2) 61.0 47.6 96.8 93.4 87.4 79.2 99.8 99.8 97.6 93.6 100.0 100.0 53.6 42.8 100.0 100.0 
M3(4) 60.2 39.0 95.4 90.4 85.4 71.0 99.6 99.0 94.0 87.6 100.0 100.0 99.4 97.0 100.0 100.0 
^M3(6) 52.4 33.6 93.2 83.0 79.8 66.6 99.4 98-2 91.4 81.6 100-0 100.0 100.0 99.2 100.0 100.0 
Tsay(1) 90.4 85.8 99.6 99-6 2.8 0.8 4.0 0.6 78.8 65.8 99.0 98-2 9.2 5.8 12.6 7.2 
Tsay(2) 87.0 77.0 100.0 99.4 13.0 6.2 12.6 7.0 97.4 95.0 100.0 100-0 9.6 5.2 14.2 7.4 
Tsay(5) 73.4 62.2 100-0 99-8 13.8 8.8 17-0 11.4 86-0 77.2 100.0 100.0 33.2 22.8 40.0 31.4 
NN(1) 100.0 100.0 100.0 100.0 3.0 1.2 2.0 0.6 79.4 72.8 99.0 98.2 12.6 5.0 11-6 7.8 
NN(2) 94.0 91.2 100.0 99.4 90.0 83.4 100.0 99.8 69-0 60.8 88.0 83.2 19.0 11.2 26.6 17.6 
NN(5) 83.6 74.6 99.4 98.0 78.4 66.8 95.8 93.0 20-0 12.4 20.6 14.8 43.0 33.4 47.2 38.2 
HM(1) 100.0 100.0 100.0 100.0 4.0 1.0 2.2 0-4 64.4 50.8 97.0 93.6 8.8 3.8 12.2 6.0 
HM(2) 100.0 100.0 100.0 100.0 51.6 43.4 94.6 91.6 82.0 78.0 100-0 100.0 20.8 15.6 20.6 17.0 
HM(5) 100.0 100.0 100.0 100.0 24.0 15.8 63.8 48-6 49.0 38.2 94-4 89.8 44.2 35.4 50.8 40.4 

Notes: (1) DGP P.1, Yt= 05Yt-_ + 0-6Yt-1et-1 + Et; DGP P.2, Yt= 05Yt_- 
- 0.6e21 + et; DGP P.3, Yt= O.5Ytl+1OYtl exp(-Y21)+et; DGP 

P.4, Yt= 0-5Y-_ll(Yt_1 <0) -0.5Ytll(Yt-_ > 0) + et, DGP P.5, Yt= 1 - 05Yt_-+(-4-0.4Yt-_)G(aYt-_) +et, where G(z) = [l+exp(-z)]-1; DGP P.6, 
Yt= 0-5Yt-1+0-5et-+Et; DGP P.7, Yt= 0-5Yt-1+ x=1 05te2_j+et; DGP P.8, Yt= 1(Yt-6> 0) - 1(Yt-6< 0) + et, where et - i.i.d. N(0, 1); (2) 500 iterations. 
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HONG & LEE TESTING FOR CONDITIONAL MEAN MODELS 523 

specific tests, M2(30) and M3(350), have better levels than the heteroscedasticity-robust 
test M1 (io). Under ARCH errors, M1 (3o0) continues to have reasonable levels (though 
still underrejected), but all homoscedasticity-specific tests strongly overreject the correct 
model. 

(2) The powers of TSAY(p), NN(p) and HM(p) are rather sensitive to the choice of the lag 
order p, and the maximal powers of these tests usually do not arise when p matches the 
true lag order of the DGP. It is often beneficial to use more lags than those specified in the 
null model, but there is no rule to select an optimal lag order for these tests. In contrast, the 
Ma (0o) tests have relatively robust power with respect to the choice of the preliminary lag 
order 5, and they require no knowledge of the lag structure of the potential alternative. 

(3) The Ma (1o) tests are not always the most powerful in detecting each of the eight DGPs. 
However, they have relatively omnibus power against all eight DGPs provided the sample 
size is sufficiently large. TSAY(p), NN(p) and HM(p) can be very powerful in detecting 
some DGPs but may have little power against others even when the sample size increases. 

(4) The heteroscedasticity-robust generalized spectral test has similar power to the 
homoscedasticity-specific generalized spectral tests in most cases. However, there exist 
cases (bilinear (1) and nonlinear MA(l)) where the former is less powerful than the latter 
tests. 

8. PREDICTABILITY AND NONLINEARITY OF STOCK RETURNS 

We now use our tests to check the predictability of stock returns. Although several seemingly 
anomalous departures from market efficiency have been well documented, many financial 
economists still believe that no other proposition in economics has more solid empirical support 
than the efficient market hypothesis (EMH). The majority of studies on EMH has focused 
on the predictability of common stock returns. Using the variance ratio test, which is robust 
to conditional heteroscedasticity,21 Lo and MacKinlay (1988) found significant positive serial 
correlation for weekly and monthly stock returns. 

It has been argued in the literature that significant autocorrelation in stock returns may 
be superficial: because small capitalization stocks trade less frequently than large stocks, 
new information is impounded first into large capitalization stock prices and then into small 
capitalization stock prices with a time lag. This time lag will induce a positive serial correlation 
in the weighted index of stock returns. Thus, the rejection of EMH for stock prices using 
autocorrelation may be the result of this nonsynchronous phenomenon. Using a hypothesized 
model, Lo and MacKinlay (1988) showed that nonsynchronous trading can at most account for 
part of the documented positive autocorrelation and concluded that stock returns are predictable. 
However, this model has not been empirically tested. Furthermore, Boudoukh, Richardson 
and Whitelaw (1994) showed that inferences from nonsynchronous trading models are highly 
sensitive to the assumptions on nontrading intervals and other stock market parameters, and they 
argued that prior studies understated the effects of nonsynchronous trading. It seems difficult 
to quantify how much of the significant autocorrelation could be attributed to nonsynchronous 
trading. 

Here, we further contribute to this literature by taking a new approach. Instead of arguing 
how much the significant autocorrelation can be explained by nonsynchronous trading, we 
check whether stock returns are still predictable after removing all linear serial correlation. In 
other words, we check whether there exist predictable nonlinear components in mean. Lo and 

21. The variance-ratio test can be interpreted as a test based on the power spectral density estimator at frequency 
zero, using the Bartlett kernel. See, e.g. Cochrane (1988). 
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TABLE 3 

Predictability and normality of stock returns 

M1 (3o0) Martingale testing Linearity testing 
c S&P 500 NASDAQ S&P 500 NASDAQ 

Statistics p-value Statistics p-value Statistics p-value Statistics p-value 

1 13-85 0.000 30-04 0-000 2.57 0-005 7.78 0.000 
2 13-85 0.000 27-19 0-000 2.57 0.005 7-04 0.000 
3 12-98 0.000 25-11 0-000 2.47 0.007 6-50 0.000 
4 12-27 0-000 23-51 0-000 2-37 0.009 6.11 0-000 
5 11-70 0-000 22-19 0-000 2.28 0-011 5.80 0.000 
6 11-25 0.000 21-10 0-000 2.23 0.013 5.55 0.000 
7 10-90 0-000 20-23 0-000 2-18 0-014 5-36 0-000 
8 10-61 0.000 19-51 0-000 2-15 0.016 5.21 0.000 
9 14-65 0-000 32-43 0-000 2.69 0.004 8.40 0.000 
10 14-65 0.000 32-43 0-000 2.69 0.004 8.40 0.000 

Notes: (1) The sample period for both S&P 500 and NASDAQ daily returns is from 1 December 
1972 to 31 December 2001; (2) Martingale testing is the application of M1 (3) 

to the raw stock 
returns Yt= 1001n (Pt/t-I1) where Pt is the stock price at day t; (3) Linearity testing is the 

application of M1 (3) to the estimated residuals of a linear AR(d) model with intercept, where 
the order d is selected by the BIC criterion. For S&P 500, the selected linear model is AR(2); for 
NASDAQ, the selected linear model is AR(1); (4) The data driven lag order 5O is computed using 
formula (6.4), with the preliminary bandwidth p = c(10OT)1/5, where c ranges from 1 to 10. 

MacKinlay's (1988) variance ratio test cannot be used for this purpose, because it can only 
capture linear dependence. 

We consider two daily stock price indices: S&P 500 index and NASDAQ index, from 
1 December 1972 to 31 December 2001, obtained from CRSP. Define stock return Yt = 
100 n(Pt/Pt-1), where Pt is the closing stock price index at day t. A graphical examination 
shows strong volatility clustering for both returns series. Thus the heteroscedasticity-robust test 
M1 (350) should be used. 

We first use M1 (50o) to test whether the stock return series {Yt } is a m.d.s. Table 3, under 
subtitle "martingale testing", reports the M1 (30o) statistics using the data-driven lag order 

Po in (6.4), with the preliminary bandwidth p = c(lOT)1/5, for c = 1, . . . , 10. These statistics are 
quite robust to the choice of Pj and have essentially zero asymptotic p-values, suggesting strong 
evidence against EMH for both S&P 500 and NASDAQ daily returns. Figure l(a, b) displays 
the shapes of the supremum generalized spectral derivative modulus m(wo) in (3.5) for both S&P 
500 and NASDAQ returns. They are apparently nonuniform over the frequency o, confirming 
the nonmartingale behaviour of stock prices. In particular, there exists more persistent serial 
dependence in mean for NASDAQ daily returns than for S&P 500 returns, because NASDAQ 
returns have a sharp mode in m (w) at frequency zero. 

Next, we examine whether stock returns contain predictable nonlinearities in mean after 
removing linear dependence. This checks if stock returns are linear in mean. We first estimate an 
AR(d) model 

d 
Yt =ao+E+ =1 Yt-j+ ?t, 

where lag order d is selected via the BIC criterion, which delivers a consistent order selection 
for stationary linear processes (Hannan, 1980). The selected models are an AR(2) for S&P 500, 
and an AR(1) for NASDAQ, with small but significant AR coefficients.22 Table 3, under the 

22. Alternatively we have also considered a class of ARMA(p, q) models with intercept, where the order (p, q) is 
selected by the BIC criterion. An MA(1) model with intercept is selected for both S&P 500 and NASDAQ daily returns. 
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FIGURE 1 

Supremum generalized spectral derivative modulus m(w) 

subtitle "linearity testing", reports the MI(3o0) statistics applied to the OLS AR(d) residuals. 
These statistic values are much smaller than the M1 (30o) statistics applied to the raw return data, 
but they are still significant. The asymptotic p-values are below 2 for S&P 500 and are essentially 
zero for NASDAQ. These results suggest that stock returns contain predictable nonlinearities in 
mean, and the evidence is stronger for NASDAQ than S&P 500. Again, Figure 1(c, d) displays 
the shapes of the supremum generalized spectral derivative modulus m (cw) for two residual series, 
which are still nonuniform over cw. Still, NASDAQ return residuals have a sharp mode for m (w) 
at frequency zero, indicating that there exists more persistent nonlinear dependence in mean for 
NASDAQ daily returns than for S&P 500 daily returns. Interestingly, Figure 1 shows that there 
are two mild spectral modes at around co = 0.6 and 1.2 for both stock returns and their residuals. 
These correspond to some mild cyclical dynamics with periodicities of about 12 days and 6 days, 
respectively, which might be due to the well-known "calendar effects". 

The M1 (i5o) test statistics obtained are very close to those under the AR(d) specification. 
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9. CONCLUSION 

Using a generalized spectral derivative approach, we develop a class of residual-based, generally 
applicable specification tests for linear and nonlinear conditional mean models in time series, 
where the dimension of the conditioning information set may be infinite. The tests can 
detect a wide range of model misspecification in mean while being robust to conditional 
heteroscedasticity and other higher order time-varying moments of unknown form. They check 
a large number of lags but naturally discount higher order lags, which alleviates the power 
loss due to the loss of a large number of degrees of freedom. The tests enjoy the appealing 
"nuisance parameter free" property that parameter estimation uncertainty has no impact on the 
limit distribution of the tests. A simulation study shows that it is important to take into account 
the impact of conditional heteroscedasticity to ensure a proper level. The tests have omnibus and 
robust power against a variety of dynamic misspecification and nonlinear alternatives in mean 
relative to some existing tests. We use our tests to check the predictability of stock price changes. 
After removing significant but possibly spurious autocorrelations due to nonsynchronous trading, 
we still find significant nonlinearity in mean for S&P 500 and NASDAQ daily returns. 

MATHEMATICAL APPENDIX 

Throughout the Appendix, we let Ma (p), a = 1, 2, 3, be defined in the same way as Ma (p) in (3.11)-(3.13), with the 
unobservable sample 

{stt-- 
(00)1T=1, where 00 - p lim , replacing the estimated residual sample 1{t }T=1 

defined in 
(3.7). Also, C E (1, oo) denotes a generic bounded constant. 

Proof of Theorem 1. For space, we only consider M1 (p); the proofs for M2(p) and M3(p) are similar and a bit 
simpler. It suffices to show Theorems AI-A3 below. Theorem Al implies that the use of 

{ItiT=I 
rather than {t }iT=1 

has 
no impact on the limit distribution of M1 (p). Theorem A2 implies that the use of the truncated disturbances {sq,t }t=1 
rather than {t }tT=1 has no impact on the limit distribution of M1 (p) for q sufficiently large. The assumption that 

8q,t 
is 

independent of {Jt-j 
j-=q+1 

when q is large simplifies a great deal the proof of asymptotic normality of M1 (p). 

Theorem Al. Under the conditions of Theorem 1, M1 (p) - M1 (p) - 0. 

Theorem A2. Let Mlq(p) be defined as Ml(p) with {eq,t}=l1 replacing {t }T=l, where {Eq,t} is as in 

Assumption A2. Then under the conditions of Theorem 1 and q = p 4b-2 (n2 T) 1, Miq (P) - M1 (p) 
p 

0. 

p+ 4--2(ln2 
T) 2b-1 

Ml(P) dN(, 
1). 

Theorem A3. Under the conditions of Theorem 1 and q =p (in2 ) , Mq (P) > N(, 1). 

Proof of Theorem Al. Noting that et(0) = Yt - g(It-1, ) in (3.1), where It-1 is the unobservable information 
set from period t to the infinite past, we write it - Yt - 

g(It_1, ) 
= Et() + g(It-1, ) - g(Itl, 0). Note that 

It :A et(0) because It1- It_1 generally, and Assumption A5 implies 

1[t - t()]2 T= g(It- ) - g( )12 = Op(1). (A.1) 

By the mean value theorem, we have e t(9) = Et - gt( )'(9 - 90) for some 9 between and 90, where g(0) =(9 

a g(t-1, 8). It follows from the Cauchy-Schwarz inequality, and Assumptions A3 and A4 that 

t1[et( ) - 8t- 
0<21 

t=1 supeo 
Ig()l2 

= Op(l), (A.2) 

where 60 is a neighbourhood of 00. Both (A.1) and (A.2) imply 

T (= t - Et)2 = Op(1). (A.3) Ct=l 
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Now, put Tj =- T - Iji, and let 5 1,0)(0, v) be defined in the same way as (1,0)(0, v) in (3.8), with {et I 
replacing {jt }tT=1. 

To show M1 (p) - M1 (p) -p 0, it suffices to show 

S(p) 
~ 

k2(j/p)Tj[1,0)(o0, v)2 -_ (1,0)(0, v)2]dW(v) 0, (A.4) 

C1(P) - C1(p) = Op(T- ), and D 1(p) - D1(p) -+ 0, where C1(p) and D1(p) are defined in the same way as 

Cl 
(p) and D1(p) in (3.11), with {et}T=1 replacing {}t}T=I. 

For space, we focus on the proof of (A.4); the proofs for 

C1 (P) - C1 (p) = Op(T 2) and D1 (p) - D1 (p) - 0 are straightforward. We note that it is necessary to obtain the 

convergence rate Op (T 2) for C1 (p) - C1 (p) to ensure that replacing CI (p) with C1 (p) has asymptotically negligible 
impact given p/ T -- 0. 

To show (A.4), we first decompose 

k2 1)Tj (, v)0 2 - (0, v)2]dW(v) = A1 + 2Re(A2), (A.5) 
where 

T-1 
(1,0) (1,0) 

d12 
I f= 1 k2. (1, (0, v) - aJ (0, v) dW(v), 

f - T- ' (jp)T(1,0) 
(10) 

2 (1 1k2 10)(, ) - (1,0) 1 ( (, 5 (0, v)*dW(v), 

where Re(A2) is the real part of A2 and -(1,0) (0, v)* is the complex conjugate of (1,0), v). Then, (A.4) follows from 

Propositions Al and A2 below, and p -* o as T -+ oc. 

Proposition Al. Under the conditions of Theorem 1, A1 = Op (1). 

1 p 
Proposition A2. Under the conditions of Theorem 1, p-2 A2 - 0. 

Proof of Proposition Al. Put bt (v) - eivet - eivet and /t (v) - eivet - p (v), where, as before, qp(v) - E(eivet). 
Then straightforward algebra yields that for j > 0, 

T 

( 10)( )- 1,0)(0, v) = iT_ j (^t - E[_Et-jT iT tT= j+1(2t - 
- T T T 1 T+ - 

+ 
iT t= j+l (t - 

- t)_t- ;((V) 

--i [T-1 T.j+1 (t - t)] T1 
j+ 

t-j (v) 

= i[Blj(V) - B2j (v) + B3j (V) - 14j (v) + 15j (v) - B6j (v)], say. (A.6) 

It follows that Al 
< 

8 6=l jT-1 k2(j/p)Tj f IBaj(v)12dW(v). Proposition Al follows from Lenmmas Al to A6 
below, and p/T --+ 0. 

Lemma Al. 
j=T k2(j/p)T fj 1 j1(v)12dW(v) = Op(p/T). 

Lemma A2. 
ET-1 

k2(j/p)T1 B2j(v)I2dW(v) = Op(p/T). 

Lemma A3. 
T-1 k2(j/p)Tj 13j(v)12dW(v) 

= Op(p/T). 

Lemma A4. j=T1 k2(jp)Tj 14j(v)12dW(v) = Op(p/T). 
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Lemma A5. j 
I 
k2(j/p)Tj f Ij(v)12dW(v) = Op(l). 

T-1 

Lemma A6. 
Y=Ij 

k2(j/p)Tj 6f jB6(v)I2dW(v) = Op(p/T). 

We now show these lemmas. Throughout, we put aT(j) - k2(j/p)T-1 

Proof of Lemma Al. By the Cauchy-Schwarz inequality and the inequality that leizl - ei2 I < IZ1 - 21 for any 
real-valued variables zl and Z2, we have 

Il2j(v)12 -T-1 [ 
tT1 

- 

 
0t)2 -1 

t1t(v)12]<v2 
2 
[j-1 ZtT=1 

- t)2]2 
It follows from (A.3), and Assumptions A6 and A7 that 

f 
T-1k2(j/p)T l )2dT-1 

][jT j k2(jp)TjB1( dWa a (t - et)2 
2 

v2dW(v) = Op(p/T), 
where we made use of the fact that 

T-1 T-1 -1 

j=1 aT(j) = j=1 k2(j/p)Tj O(p/T) (A.7) 

given p = cTX for k E (0, 1), as shown in Hong (1999, A.15, p.1213). II 

Proof of Lemma A2. By the inequality that leizl - eiZ2 I < IZ1 - z21 for any real-valued zl and z2, we have 

lB2j(v)12 < [T- 
t=1 

it - ]2 [T -1 t=l Vt - vE t < v2 y,1 Et=1(t 
- St)2 ] 

The desired result then follows using reasoning similar to that of Lemma Al. II 

Proof of Lemma A3. We decompose 

B3j(v) Tj1 t 
T=j+l 

et[eivet-J eivet-j(0) + T 
t=j+ 

l et[eivet-j() - elvEt-j] = 31j(v) + B32j(V) 
(A.8) 

First, we consider B31 j (v). Using the inequality that lei z - eiz2 I < IzI - z21 for any real-valued z1 and z2, Minkowski's 
inequality, and the Cauchy-Schwarz inequality, we have 

E1B31ij(v)2 < v2E 
TJ-1 

z 
t=j+l let litj t-j(E)l2 

Sv2 
{T1 tTj+1 

(E4 )4 
[E(suPoe)o Ig(It-L 

) - 
rg(t-j, O)l)4] 

2 

SCT-2 v2 tT=1 [E(supeeoo g(It,9) - 
g(It,O)I)4] 

2 

It follows from Markov's inequality, (A.7), and Assumptions Al, A5 and A7 that 

j=1- k2(j/p)TjlB31j(v)12 = Op(p/T). (A.9) 

Next, we consider /32j(v). Using the inequality that leiz - 1 - izI 
_ 
1zl2 for any real-valued z, we have 

leivet-() - 
eivet-J 

- iv[Et- j() 
-- 

tj]eiVet-j I < v2[t- j() - stj]2. (A.10) 

Also, a second order Taylor series expansion yields 

Et--j () = Et--j - gj 
(o)' ( - ) - (O - 

o0)'ggj ()() 
- 0o) (A.11) 

for some between and 0 where 
g_ 

(0) - g(It-_j, 6). Put $t (v) = g(O0)eivet. Then (A. 10) and (A.1l1) imply 

eivet-j(O) - 
eivet-j 

- 
iV2t-j(v)(O 

- 
0o)I < v2[ j(0) - Et-j]2 + Ivll - j0 112 

supeo0 llg;1j(O)ll. 
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Therefore, by the definition of B32j (v), we obtain 

Tj 1B32j(v)l < Ivll 0l0 Et=j+1 tt-j(v) 
+ 

t= j+l 
It l[Et-j(0) - t- j]2 

+Ivlll0 - 8o0112 
t=j+ ist supeo ()ll. 

It follows from Assumptions Al to A8 and (A.7) that 

T-l k2 (j/p)T jlB32j(v)l2dW(v) < 
411/T( 

- 00)112 2 

,' 

k2(j/p) 

x T 1 
t=j+1t`t-j(v) 22dW(v) + 411 VT( - 0)14 

x T-1 t =t -1 
t1[sup0o )4 

X a (j) v4dW(v) +411 /T(O - 00)114 (T-1 
T 

2) 

x T- 
T1[supoeo0 g9]2 [ T-1 a vaT 2dW(v) 

= Op (p/l T), (A.12) 

where we made use of the fact that Ell tT= j+l st1t-j(v)l2 < CTj given E(stlt-1) = 0 a.s. under H[ and 
Assumptions Al and A3. The desired result of Lemma A5 follows from (A.8), (A.9) and (A.12). II 

Proof of Lemma A4. By the Cauchy-Schwarz inequality, I B4j (v)j12 (T-1 7T= j+1 Et)2-1Tj 1T=j+1 iSt(v)I2 
It follows from the Cauchy-Schwarz inequality, and 1St (v)l Ivl l - t - that 

jT k2(jp)Tj f B4j(v)2dW 
j1 

k2(j/P -1 tE T= j+1 
t)2 

x - t)2 v2dW(v) = Op(p/T) 

given (A.3) and (A.7), and 
E(t-T= j+1 st)2 

= a2Tj by the m.d.s. hypothesis of {Et}. I1 

Proof of Lemma A5. We first write 

B5j(v) -= T-1 
It=j+l[t-t t(0)1]t-j(v)+Tl T= j+1[t(&)-st]t- j(v) B51j(v)+B52j(v), say. (A.13) 

Given I| t (v)l < 2, (A.7), and Assumptions A5-A7, we have 

k2 ( j/p)T1 J 51j(v)2dW(v) 4 =lit - 
t(]1t j2 l aTy(j) dW(v) = Op(p/T) (A.14) 

Also, by the second order Taylor series expansion in (A. 11), we have 

--52j 

- -0) 1 

tj+l 
gtf(0)lt-j(v) + 1-(0 - 0 

1 T -1 
Etj+1 

t()-t-j(V) 
(--0) 

where 9 lies between 0 and 80. Thus, we have 

T-_1 
k2 (j/P)T IB52j(v)i2dW(v) < 

2| ( - _0)112 
j--0 

k2(j/p) 

x TJ-1 
t= g1t(O0)it-fj(v) dW(v) 

+2 /( - 80) T-1 LT_1 supeeo 
Ig ii()l2 

x [i l aT(j) dW(v)= Op(1)+ Op(p/T), (A.15) 

where the last term is Op(p/T) given (A.7), and the first term is Op (1), as is shown below: 
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Put 
rlj(v) = E[g(00o),t_j(v)] 

= 
cov[g'(00), Vt-j(v)]. 

Then 
suPveR 

1 Ilolj(v)ll 
_ 
C by Assumption A8. 

Next, expressing the moments by cumulants via well-known formulas (e.g. Hannan, 1970, (5.1), p. 23, for real-valued 
processes), we can obtain 

TE 1 
t= j+1 

-j(V) - 
<() Icov[g(00), g, r(00)'] l I c, (v, -v) 

STt t--T j 

? 
jT IIoit+l.(-v)ll I j-II(v)I 

+ " --Tj Ij, 1rl,j+lrl(v)j 
<_ 

C, (A.16) 

given Assumption A8, where Kj,l,r(v) is as in Assumption A8. See also (A.7) of Hong (1999, p. 1212). Consequently, 
from (A.7) and (A.16), Ik(-) I< 1, and p T - O0, we have 

j=1k2(j/p)E T-1 t=j+l 
g(o)#t-j(V) 

dW(v) 

<C j= 
j( 2dW(v)+C = aT(j) 

= 0(1) + O(p/T) = 0(1). 

Hence the first term in (A. 15) is Op (1). The desired result of Lemma A5 follows from (A. 13) to (A.15). 1I 

Proof of Lemma Al. The proof is analogous to that of Lemma A4. I1 

Proof of Proposition A2. Given the decomposition in (A.6), we have 

I[10) (0, V)- ' (0, V)]&.(1,0) (0, v)*( < B W 
a=1aj() 

1,0) 
(0, 

(A.17) 

where the Baj (v) are defined in (A6). By the Cauchy-Schwarz inequality, we have 

-T-1 2 A (1,0) 

J=1 k2/(jp)Tj IBaj(v) IJo (0, v)IdW(v) 

< k(j/p) 

[ 

Ba dW(v) 

2 
T- 

k2(j/p)Tj 
f l (0, 0) 2dW(1)]v2 

1 1 1 1 
= Op(p2/T2)Op(p2) = op(p2), a= 1,2,3,4,6, (A.18) 

given Lemmas Al-A4 and A6, and p/T -+ 0, where p-1 T-1 k2(jp)Tj f (1,0)(0 v)2dW(v)= Op() by 
Markov's inequality, the m.d.s. hypothesis of {et }, and (A.7). 

It remains to consider a = 5. By (A.13) and the triangular inequality, we have 

1k2 
(j/p)Tij f 5j(v)II o(1,0) (0, 

v)IdW(v) < k2(jp)Tj fIB51j(0v) 
1 (0, v)IdW(v) T-1 + j= k2/p) 

j 
) 
(Ov)|dW(v). (A.19) 

For the first term in (A.19), we have 

-1 k2 ( Tf 51j(v ,0)(0, v)dW(v) 2 T1 supee g( 1' 0) - 

(It-_, 
0)1] 

x L 
J/=1 s 

0(0, v)1dW(v) 

= Op(p/T2), (A.20) 
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given Assumption A5, (A.7), and the m.d.s. property of {et }. For the second term in (A.19), we have 

j k2(kj/p)Tjf B52j(v)1 l,0)(0, v)IdW(v) < 110 - 
0,11| L 1 k2(j/p)Tj 

1 1 1 

E 1 
t=j+ ()t-j 

() 10)(0, v) E T-1 
t=j+ ()t-j() 

[E 1,0)(0( v)22! 

1 1 

< C[1lj(v)l+ 
CT. 2]z. 

2 

T2 1 k2(i/p)TEJ T-1 T T1 - 2)(0, v)IdW(v) 

T-1 

1 

T-1 

1 

_ 

C 
j= 

] Iqj(v)dW(v) + 
CT- Zj=1 

k2(j/p) = O(1 + p/T2) 

Proof of Theorem A2. The proof is similar to that of Theorem A. Let1) A l q andve A2q be defined in the same way 

as A1 and A2 in (A.5), with 
{8q,t}T=1 

replacing 
{&t}T=1. 

It suffices to show 
p- ailq 

4 0 and p2 a2q 
- 0. 

Put 8q,t -- eivet - eiveqt and 
fq,t 

(v) - eiveqt - Pq (v), where Pq (v) 
E(eiVeq,t). 

Let &(1,O) (0, v) be defined 
as & 0)(0, v), with {eqt}T= replacing {et}=1. Then, similar to (A.6), we have 

j 

1,0) 
(0, 

v) 

-.&.o) 

(0, 

v)q 

= i 

TJ-1 t=_j+1(tt 

- 

8q,t)3q,t-j(V) i 
-1 

tT=1j+1(st 
-- 

Lq,t)J 
x T1(-)1 

t=j+1q,tj(v) 
+ iT-1 

t=j+1 qtSqt-j(V) 

- 
(Tj-1 tTj+l 

Sq,t 
T-1~ 

- 
tT 

j+l'q,t- 

j(0) 

+iTT1 Lt= j+1(<t - q,t)q,t-j(V) j- 1 E=j+1(0t - Vqt) 

x T 
fztT=j1 

+ V~q,t j(0v) 
= i[Bijq(V) - B2jq(V) + B3jq(V) + B4jq(V) - 51jq(V) + ( B6jq(V)], say. 

Following reasoning analogous to that of Theorem Al and noting that E(st I It-i) = 0 a.s. and E(eq,t I It-i) = 0 a.s., 
we obtain 

T-lq 8 a= 
k2(j/p)Tj IBaj,q() 2dW(v) -= p(p2/q) = op(1) 

given Assumption A2, q/8.p -+ c and ombining 1. Moreover, by the Cauchy-Schwartz inequality, we can obtain 

p2A2q = 2p-2 

Ea=1 j11 k2(j/p)T1Re 
Bajq(V)3 ,0)(0,v)*dW(v) = Op(p!/q2)= op(1). 

This completes the proof of The proof is similar to that of Theorem A2. Let and q be defined in the same way 
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Proof of Theorem A3. We shall show Propositions A3 and A4 below. 

Proposition A3. Let (10)(0v) 
be defined as j1,0) (0, v), and let q(p) be defined as el (p), with 

{eq,t}iT= a cinv)[beEdefinedtas&.T 
( 

replacing {et }T= 1. Then under the conditions of Theorem 1, 

p 2 1 
k21(jp)T 0 (0, v)02dW(v) 

= P 2C1 (P) + P2 Vq + op(l), 

where Vq = Nt=2q+2q,t =l aT(j)f 
/q,t-j (v)[js-2q-1 

Eq,s q,s*-j(v)]dW(v). 

Proposition A4. Let Dlq(p) be defined as DI (p) with {(Eq,t } replacing {t }. Then D1q2 (p) Vq - N(O, 1). 

Proof of Proposition A3. Recall that 
5(1,0) 

(0, v) = T7 
j- 

t j+ 1Eq,t q,t (V), where q, t (v) - eivq- q q(V) 
and pqq(v) = E(eiVeq,t). We first decompose 

T1 k2 (j/p)T 
1 J (0, v)I2dW(v) = j aT(j) =1 q,tq,tj() dW(v) 

T-1 
2qt dW(v) + j1 aT(j) f E 1j8q,tq,t-j(V) dW(v) 

-2Re j=1 aT(j) f =1Eq,tOq,t-j(v) 

x sq, t q,t-j(v) dW(v) 

Sq + Riq - 2Re(~2q). (A.22) 

Next we write T-1 T E2 2 dW(v)+ 2Re T-1 
Oq = Ej1 

aT(j) Et= q,tlq,t-j()2dW(v) 2Re j=1 aT(j) 

x f tT=2 s EtSq,ts 
*q,st-j(V)qj,sj(v) 

SCq(p) + 2Re(Uq), (A.23) 

where we further decompose 

T T-2 
t,-2q-1 , lq = t=2q+2qt J 

j=l aT(j) q,t-j(v) 
--qs=- 

 E q,siqs-j(v)dW(v) T T-2 t-1 
t=2 Eqt j= aT 

(J)q,t-j 
(v) s=max(1,t-2q) q,s -j(v)dW(v) 

Ulq + R3q, (A.24) 

where in the first term Ulq, we have t - s > 2q so that 
{8q,t, iq,t-j()} q=l 

is independent of {Sq,s, *q,sI-j(V)=l 
for q sufficiently large. In the second term R3q, we have 0 < t - s < 2q. Finally, we write 

Ulq ----t=2q+2q,t  aT(j) 
qt-j(v) 

s=2ql 
8q,sq-j(v)dW(v) 

T T- t-2q-1 

, 
+ 

t=2q+2 
8q,t Lj=q+i aT(j) 

q,t-j(v) 
s=l 

2qs'sq,sq-J(v)dW(v) 
SVq + R4q, (A.25) 

where the first term Vq is contributed by the lag orders j from 1 to q; and the second term R4q is contributed by the lag 
orders j > q. It follows from (A.22) to (A.25) that 

T1l k2 /10) (0, v)I2dW(v) = Cq(p) + 2Re(Vq) + R1q - 2Re(R2q - R3q - R4q). 

This content downloaded from 128.84.125.184 on Fri, 22 Nov 2013 14:04:40 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


HONG & LEE TESTING FOR CONDITIONAL MEAN MODELS 533 

1 

~ 

-1 
It suffices to show Lemmas A7-All below, which imply p-2 [Cq(p) - Cilq(P)I = op(1) and p-2 Raq = op(1) for 

a = 1, 2, 3, 4 given q = p l+4b2n2 T)2b andp = cT for0 < X <(3 + 4 

Lemma A7. Let Cq (p) be defined as in (A.23). Then Cq (p) - l1q (P) = Op (p2/ T). 

Lemma A8. Let Rlq be defined as in (A.22). Then Riq = Op (p2/ T). 

3 1 
Lemma A9. Let R2q be definedas in (A.22). Then R2q = Op(p2 / T 2). 

1 1 
Lemma A10. Let R3q be defined as in (A.24). Then R3q = Op(q 2p/T 2). 

Lemma All. Let R4q be defined as in (A.25). Then R4q = Op(p2b ln(T)/q2b-1). 

ProofofLemma A7. By Markov's inequality and EICq(p) 
- 

1lq(P)I < Cp2/T given 
j1_(j/p)aT(j) 

= 
O(p/T). II 

ProofofLemma A8. By the m.d.s. property of {8q,t, .t_-} where .t_1 is the sigma-field generated by 

{et-j}= 
,we canobtain EJ 

L=1 
Eq,tq,t-j(v)J2dW(v) = J E l[q,t j (V)12]dW(v) 5 Cj. The result 

then follows from Markov's inequality and T-=1 (j/p)aT (j) = O(p/ T) given Assumption A6. II 

Proof of Lemma A9. The proof is similar to that of Lemma A8, with the fact that El fZt=1 Eq,tfq,t-j(v)] 

x [ t=l Eq,tfq,t- j (v)]*dW(v)I < C(j T) 2 given Assumption A6. I 

Proof of Lemma A10. By the m.d.s. property of {Eq,t, Ft-1}, 
Minkowski's inequality and (A.7), we have 

Ell3q 2 T=2E =1 aT(j)f q,t 
q,t-j(V)-s=max(1,t-2q) 

q,s 
*qs-j(v)dW(v) 

2 - 2 

=2 j=l aTJ E 
8,ttCq, 

j(v) s=max(l ,t-2q)cqs -j(V) dW(v) 

< 2CTq Lj=1 aT(j) - O(qp2/T). 

Proof of Lemma All. By the m.d.s. property of {eq,t, .t_1 } and Minkowski's inequality, we have 

EIR4q 1 t=2q+2 E jj=q+la(j) 
Eq,tq,t-jW(,) 

s=1 qsqs-j(v)dW(v) 

T ST-1 a(j)t-2q-1 T 2 

SLt=2q+2 Lj=q+l aTu(j) 
E 

8q,trq,t-j(V) s=l 8q,s qs-j 2) dW(v)j 

CT2 L + 1 aT()]2 C3 (/P-2bT -1 ]= O(p4b ln2 (T)/q4b-2) 

given Assumption A6 (i.e. k(z) 
< 

Clzl-b as z -+ oo). II 

Proof of Proposition A4. We rewrite 9q = tT-2q+2 Vq (t), where 

Vq(t) = Eq,r j=1 aT(j) q,t-j()H2(v)Hj,t2q1(v)dW(v), 
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and Hj,t-2q-1(v) 
= t21 Sq,s* q,s (v). We apply the martingale limit theorem (Brown, 1971), which states 

1 d 
var(2Re Vq)-F2Re Vq d+ N(0, 1) if 

T 
1 var(2Re Vq)-1 t=1[2Re Vq(t)]21[12Re Vq(t)l > 

1. 
var(2Re Vq)2] - 0 V? > 0, (A.26) 

var(2Re q)- EtT=1 E [2Re V2(t)IYI] -1 1. (A.27) 

First, we compute var(2ReVq). By the m.d.s. property of {eq,t,t -1 under Ho and independence between Eq,t and 

{et--j-) }=q for q sufficiently large, we have 

qI-2 Tq? 2 E fI: q_ E(V2) 
- t=2q+2T 

E 
qt _aT(J)q,t-J(V) 2q-1 

ss=l q',s-j(v)dW(v) 

= Il q I T tr-2q-1 [ ,F22tf ~,t- j V *qt 
(V')] 

-= l=1 
aT(j)aT(l) ff t=2q+2 2q- Es=lt-j t- 

xE 
2,sqs-j)qsl(V) 

dW(v)dW(v') 

= E= l 
/=1 

k2(j/p)k2(l/P) IE [ 
,o~q,-j(v 

) q,-1(V) 2dW(v)dW(v') [1 +o(1)]. 

Similarly, we can obtain 

E(*)2 2 1 
q 

/=q 

k2(j/p)k2(1/p) Jf IE[e2 
q,O (v)fq,-j( -l)]12dW(v)dW(v')[1 

+ o(1)], 

Elq 
12 1 =l E qk2(j/p)k2 (l/p) E[e8q rq,-j(v) 

_, 

(v')]I2dW(v)dW(v')[1 + o(1)]. 

Because W(.) weighs sets symmetric about zero equally, we have EIVq12 = E(Vf2) = E(V*)2. Hence, 

var(2Re Vq) = 
E(Vq2) 

+ E(V;)2 + 2EIVq 2 

=2 
=1 

=1 k2(j/p)k2(/p)ff IE[eO_ij(v)-Il(')] 2dW(v)dW(v')[1+ o(1)], (A.28) 

where we have made use of the fact that 
E[E20q,-j (v)4-l(V')] 

-+ 

E[es2-_j(v)*-l 
(v')] as q - oo given 

Assumption A2. Put C(O, j, 1) - E[(e2 - r2)1/_j(v)*-l 
(v')]. Then 

E[e82*r_j(v)~r-_l()] = C(0, j, 1) + C2alj(v, v'), 

IE[eo2Cj (v)1-l(v)]112 
= IC(0, j, 1)12 + 

or4krl-_j(v, 
v1)I2 + 2r2Re[C(0, j, l)af j(v, v')]. 

Given E=-oo ,=-,o IC(0, j, 1)1 < C, and Ik()I < 1, we have 

var(2Re Vq) = 2-r4 =~ 

= 
Eq k2(j/p)k2(l/p )ff ol-J(v, vf)12 dW(v)dW(v')[1 + o(1)] 

S24 j 
-1 

q 

k2(j/p)k2[(j - m)/p] 

x Jf m(V, v')l2 
dW(v)dW(v')[1 + o(1)] 

= 
2a4p f?k4(z)dz 

J_ 
t 
rnm(u, v') 

2 dW(v)dW(v')[1 + o(1)] 

= 4rt4pj k4(z)dz ff f If(o 
, 
v,')2dwodW(v)dW(v')[1 

+o(1)], 

where we used the fact that for any given m, p-1 4=m+ k2(j/p)k2 - k4(z)dzasp - oq/p -+ 0. 
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We now verify condition (A.26). Noting that EHj,t-2q-1 (v)14 < Ct2 for 1 < j < q given the m.d.s. property 
of {Eq,t, Ft-1 and Rosenthal's inequality (cf. Hall and Heyde, 1980, p. 23), we have 

E|Vq(t) 4 < 

=qaT(j) 
f(gEq,t q,t-j(v)Hj,t-2q-l(V)14)4 

dW(v) 

< Ct2 

[L"=1 

aT(j) = 

O(p4t2/T4). It follows that 
T==2q+2 EIVq(t)14 = O(p4/ T) = (p2) given p2/T 

-~ 

0. Thus, (A.26) holds. 
Next, we verify condition (A.27). Put 

q,t - E(eq,t I t-1). 
Then 

E[V2 
(t)Ft-1] 

= t 
2,t = aT(j) q,t-j(v)Hj,t-2q-1(V)] 

q 174ja ( ,t Eq I,t-j U) q,t-l( j L'=1 
=-1 

aT (j)aT (1)1ff1 ,tfqt-j 
(v)fqt-l(V') X Hj,t-2q-1 (v)Hl,t-2q-1 (v')dW(v)dW(v') 

- =1 
= q aT(j)aT(l) ff E[aq,tvq,t-ji(v)*q,t-i(V')] 

x Hj,t-2q-l (v)Hl,t-2q-1 (v')dW(v)dW(v') 

+ qaT(j)aT(1) Z j(v, v')Hj,t-2q-l(V)nHI,t-2q-1(v'dW()dW(v)dW(v 

Slq(t) + Vlq(t), say. (A.29) 

where () 
,tqt- ,t- 

Put Z 21 ') _ sq,s q-j(V)qs-l(v') - E 

[,/q,t-j()q,st-l(v'). 

Then we further decompose 

S2q(t) - 
= ~ 

l 
a j (j)a (1) f E[a ,t-j 

(q,t-j(v)qt-E[Hjt-2q-1 
( 

v)Hl,t-2q- (v')dW(v)dW(v') 

+=1 aT(j)a(1)f E[4,tvq,t- 
j(V) 
\ 

q,t-l(V')] 

x?{j,t-2q-1 (V)Hl,t-2q-1(v')- 
E[nj,t_2q_-l(v)Hl,t-2q- 

(v')]}dW(v)dW(v') 
-- V2q(t) + S3q(t), say, (A.30) 

where 

S3q(t) = =1 z 1 aT )aT() E[) f ,tq,t- jvq,t-j (v)lq,t-l(V)] dW(v)dW(v). 

Put Z:Is(V, V/) 
- Eq2,sq,s-j(V)*Pq,s-l(V') 

- E 
[Eq2,s 

*q,s-j(v)W q,s-1( 
W)]. 

Then we write 

S2qt) 

W 

q'=1 

q 
<r(j)aT<(1) E[8t*qts-j j(q 

, 
t- 

) t-2q-1 Zj')dW(v)dW( 

?+ E 

lql_1 

aT(j)aT (j)aTf(1) E 

[2,tt 

q,t 
-j(v *qt- 

qt- )] 

x 
EZr>2q 

~qs-j ()q,sr q,r-l()q, W()d,(v')dW(v)dW(v) 

V2q(t)+ S3q(t), say, (A.31) 
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T 

E[V+jq[t)]} "- 
-4=l 

a 
t=2q+2 Vaq(t). 

It It follows from (A.29) to (A.32) that 
-ti=2q+2{E[V2(t)lYt-1] 

- 

E[V_(t)]} 

= 4=1 tT=2q?2 V 

suffices to show Lemmas A12-A15 below, which imply El T=2q+2E[V42(t)lFt-1] - E[Vf2(t)]12 = o(p2) given 

q = p1+4b (n2 T) 2b31 and p = cT for 0 < X < (3 + 4 2)-1. Thus, condition (A.27) holds, and so 

()d 
M1q(P) - N(O, 1) by Brown's theorem. 

Lemma A12. Let Vlq(t) be defined as in (A.29). Then El tT=2q+2 Viq(t)12 = O(qp4/T). 

Lemma A13. Let V2q(t) be defined as in (A.31). Then El ET=2q+2 V2q(t)12 = O(qp4/T). 

Lemma A14. Let V3q(t) be defined as in (A.32). Then El t-T=2q+2 V3q(t)l2 = O(qp4/T) 

Lemma A15. Let V4q(t) be defined as in (A.32). Then El T=2q+2 V4q(t)12 = O(p). 

Proof of Lemma A12. Recall the definition of 
Zt(v, 

v') as in (A.29). Noting that 
Zt(v, 

v') is independent of 

{Hj,t-2q-l(v)Hl,t-2q-l(v')} and that Zt(v, 1v) is independent of 2j(v, v') for t - r > 2q and 1 < j,l < q, we 
can obtain 

T '2 

J'j1j' 
E T=2q+2 j, (v, v)Hj,t-2q- (v)Hl,t-2q-1 ( t) 

-r2q I 
t 

2q 
)I 1 1 

x (E|Hj,t-2q-1 (v)4) (EIHl,t-2q-1 (v')4 1 1 
x(EHj,r-2q 

(v)l4)4 (EIHl,t-2q-1 (v')14 )4 = O(T3q), 

where we have made use of the fact that ElIj,t-2q-1(V)l4 < Ct2 for 1 < j < q. It follows by Minkowski's inequality 
and (A.7) that 

< = a=1a' (j)aT(1) (E =I 2q+2 Zt (v, v')nHj,t-2q-l (V)HI,t-2q-(v')dWdW' 2) 

= 
O(qp4/T). 

Proof of Lemma A13. Recalling the definition of 
Zs(v, 

v') in (A.31) and noting that 
{Zs(v, v')}q,1= 

is 

jl 
I t-q-1 i 1 12 independent of 

{Zr'(v, 
v')},=l 

for Is - rl > 2q where q is sufficiently large, we have ElE 
-q-1Zs(v 

v) 

EZ 
jls 

-rl<2qE[Z 
Jjl(V, t 

I 
Vj,l s-r qE [Z (v, v')Zqr (v, v')] < 2Ctq. It follows that 

E 
Zt=2q+2 

V <2q(t) 2 tT=2q+2 [EIV2q(t)l2] 
2 

j_ "ZIt=2q+2 
_=1 

1 aT(j)aT(1) 
IE[e2,trq,t-j(V)1fq,t-(V')]l 

x E L-2q-1 Zq, sv1 
2 

dW(v)dW(vf) 

= O (qp4/T). II 
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Proof of Lemma A14. The result that ElEtt=2q+2 V3q (t)I2 = O(qp2/T) by Minkowski's inequality and 

2 Fr2 

x[ t2 E qs1Iqsj(v) s-r<2q qrqqrl(V) dW(v)dW(vf) 
s=l 

E 

,s- 

W(V 

S2Ctq 
=1aT(j)] 

= O (tqp4/T4). II 

Proof of Lemma A 15. The result that El T -2q+2 V4q(t) 2 = O(p) follows from Minkowski's inequality, 
p - oo, and the fact that 

EIV4q(t)I2 = E 
I-=1 

=lql 
aT(j)aT(l) 

f E [_2,0Oq,_j(v))q,_l(v')] t-2q-1 
i =I- qs=2q+2Eq,s *q,s-j(V) 

, --s-2q-1 

2 x 

s-2r=-1 8q,rIq,r-l(V)dWdW' 
2 

=-j=1 Lj2=1 
/l 
=1 aq2=1 aT (Jl)aT (2)T(ll)aT(12) E[8E 4q,O 

j 
(vl)fq,-ll (v')] 

x 
E[?e0 

j2 (2) (V)]~t-2q-E[g2, s q,s -jl (v1 ) q,s--j2 (V2)] 

xXs-2q-1E[82,r~qrl,( ) 
_2 

) 
x 

r=1 EV~ q- q~ '2 
(vi,)-12 

x 
dW(vl)dW(v')dW(v2)dW(v2) 

= O(t2p/T4) 

given Assumptions A2 and A8 (i.e. E = 1 laj(u, v)I < C and ~=1 I| E[(e2 - a2)-j (u)f-1()) < C) 

Proof of Theorem 2. We consider M1 (p) only. The proof of Theorem 2 consists of the proofs of Theorems A4 
and A5 below. 

1P Theorem A4. Under the conditions of Theorem 2, (p2 / T)[M (p) - M1 (p)] - 0. 

Theorem A5. Under the conditions of Theorem 2, 

1 ( PIf(010) (p2 / T)MI(p) - 
(2D)-2 Jr f, If' (0o(W, 

0 , 0v) - 
fO0'l') 

(w, 0, v)]2dod W(v). 

Proof of Theorem A4. It suffices to show that 

T-1 =1 k k2 [,a 1,0) (0, v)12 _ I - 1,0) (0, v)12] d W(v) 0, (A.33) 
P-1 [C1 (P) - C1(P)] = Op (1), and p-1[D1 (p) - D1 (p)] 0, where iC (p) and D1(p) are defined in the same way 
as C1(p) and l1(p) in (3.11), with {et}T1 replacing ({~tiT=1,. Since the proofs for p-1[1(p) - C1(p)] = Op(1) 
and p-1 [1 (p) - D1 (p)] p 0 are straightforward, we focus on the proof of (A.33). From (A.7), the Cauchy-Schwarz 
inequality, and the fact that T T - 1,0)_ k2(j/p)Tj (0, v)|2dW(v) = Op (1) as is implied by Theorem A5 (the 

proof of Theorem A5 does not depend on Theorem A4, it suffices to show that T- 1 -1 0, where A1 is defined as in 
(A5). Given (A6), we shall show that T1 

T1 
k2(j/p)Tj 

aj(v)2dW(v) P 
0, a = 1,..., 6. We first consider 

a = 1. By the Cauchy-Schwarz inequality and 18t (v)J 
_ 
2, we have 

j()12 -B-1 t(t=Tj+1 (t - st)2 L- T- 
t=j+l 

It(v)12 -1 T- 2t= 1(t - Et)2 
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It follows from (A.3) and (A.7) and Assumption A7 that 

T1 f 1 k2(j/p)TjlBlj(v)l2dW(v) < [ =(t 
- 

et)2] I_ aT(j) [fdW(v) = Op(p/T). 

The proof for a = 2 is similar, noting that T-1 -T j+1(&t - et)12 - 1 tT +1(t - 
tt)2 Next, we consider a = 3. By the Cauchy-Schwarz inequality, we have 

B3j(V)2 
T-1 

tT= 
2 

-1 tT j+ 1 tj(V)12 
2 -1 tT= T-1 tT 

t -t)2 
It follows that 

If 
ET-l2kA2 

T 

^ 
I 

t) 
(_t 

-- 
't)21 

T-1 

=k2I 

k(/p)TjIB3j(v)12dW(v) < T-1 

EtT1 

) T1 -t)2 

x 
j= 

2 
(j/p) v2dW(v) 

= Op (p/l T). 

The proof for a = 4, 5, 6 is similar to that for a = 3, noting that T1 T= j+1 st ()2 - 1 
=j+1 

t (v)12. This 
completes the proof for Theorem A4. II 

Proof of Theorem A5. The proof is very similar to Hong (1999, Proof of Thm. 5), for the case (m, 1) = (1, 0) and 
W1 (.) = 8(), the Dirac delta function. 1I 

Proof of Theorem 3. Again, we only consider M1 (p). We shall show Theorems A6 and A7 below. 

Theorem A6. Under the conditions of Theorem 3, Pi1 
(p) 

- M1 () -0. 0. 

Theorem A7. Under the conditions of Theorem 3, M1 () - M1 (p) 0. 

Proof of Theorem A6. Put B Z 
T--r1 k2(j/)Tj 1 f 1,0) (0, v)12 - (1,0) (0, v)12]dW(v). It suffices to show 

p-2 0, p-[C1(3) - C1(3)] 0 and p-l[D() 
- 

()] 0. We shall show 
p-2 

P 0; the proof 
1 P P 

of p-2 [C1 (P) - C1 (f)] -- 0 and p-l[(13) - D(3)] p 0 is similar. Given the conditions on k(-), there exists a 
symmetric monotonic decreasing function ko(z) in z > 0 such that jk(z) l ko(z) for all z > 0, and ko(.) satisfies 
Assumption A6. It follows that for any constants E, q > 0, 

1 ^ 1 ^ 
P(p-2 IBI > e) < P(p-2 IBI > E, I/p - II < q)+ P(If/p - 1I > 77), 

where the second term vanishes for all q > 0, asymptotically given ̂/p - 1 - 0. Thus it remains to show that the first 
term also vanishes as T -- oc. 

Because I/lp - I I < r implies^3 < (1 + 7)p, we have that for 
IP/lp 

- II < r, 
1 1 T-1 

2 
(1,0)(, v)2 1,0)(0, v)12] 0 

p2IBI< (I + ) [(1 + )p]2 
_ j=lk[(+)p]Tj j (,v) 

for any rl > 0 given (A.6), where the inequality follows from the fact that Ik(z)I <i Iko(z)I. This completes the proof of 
Theorem A6. II 

Proof of Theorem A7. Put Q(p) - 2r =T-1 k2(j/)Tj f (1,0) 
(0, v)12dW(v). 

Then we can write 

- p 

Following a reasoning analogous to the proof of Hong (1999, Thm. 4), we can obtain p2- 
[Q(/) 

- Q(p)] p 0 under 

H0. This and Lemma A16 below imply M1 (3) - M1 (p) p 0. Hence, M1 (3) dN(0, 1). II 
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Lemma A16. Suppose Assumptions A6 and A8 hold. If i/p = 1 + Op(p-(-1)) for some / > 1 + 4b2' 
where b is as in Assumption A6 and p = cn forO < < (3+ 4b2)-1 and0 < c < . Then p-:! [C1(f0)-CI (p)] 
0 and p-[1 D() - D(p)] -- 0. 

Proof of Lemma A16. The proof is analogous to the proof of Lemma A.2 in Hong (1999, pp. 1217-1218). 
Note that the factors f Tj tC+ j+e21 rt -j (v)12dW(v) and f Tj ET=max(j,l)+l ?EI It-i(v)U)t-(V')12dW(v)dW(v') 
in C1 (p) and D1 (p), respectively, do not appear in Lemma A.2 of Hong (1999), but this does not alter the proof 
much, provided that we apply Markov's inequality to obtain the orders of magnitude for the terms involving these 
stochastic factors. Note also that the condition X e (0, 1) as imposed in Hong (1999) is implied by the condition that 
0 < ,<(3 + 4b2)-. II 
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